You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 February 2020Oracle-bone-inscription image segmentation based on simple fully convolutional networks
Oracle bone inscriptions (OBIs) are invaluable materials for recovering the economic and social forms for Shang Dynasty, one of the most ancient dynasties in China. It is very important to get the original OBIs from scanned images of oracle bone rubbings. To this end, researchers have to employ a very time-consuming method that they follow the inscriptions by handwritten tools, pixel by pixel and image by image. In this paper, an image segmentation method was proposed to overcome this limitation based on fully convolutional networks (FCN). In order to speed up training as well as boost the segmentation performance, a simple FCN with only convolutional layers was designed, where batch normalization was incorporated. The proposed method was tested on a real OBI image set (320 samples). Experimental results show that the proposed method is effective enough to get the OBIs from scanned images of oracle bone rubbings.