You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
31 January 2020Unsupervised generation of artistic representations
While deep neural networks excel at a variety of visual tasks, obtaining large quantities of labeled data remains exorbitantly expensive or time-consuming, especially when it comes to pairs of photos and their artistic representations. To overcome the burden of annotation, various solutions exploiting the unlabeled data have been proposed recently. In this paper, we present a novel approach to the unsupervised domain adaptation problem, allowing us to successfully generate avatars from photos. Assembling a system of several neural networks, including a Generative Adversarial Network (GAN), fully trained on unlabeled data, we researched the influence of various factors on the GAN training process and eventually built a system superior to current analogues. In contrast to the existing unsupervised domain adaption approaches, the proposed solution is highly flexible, which allows tuning of individual elements of the system to achieve different visual results. During the user study, we evaluated the performance of the proposed method and found results close to the human level quality.
The alert did not successfully save. Please try again later.
Roman Steinberg, Sergey Kastryulin, "Unsupervised generation of artistic representations," Proc. SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), 114332U (31 January 2020); https://doi.org/10.1117/12.2557111