Integrated photonic nanostructures provide powerful degrees of design freedom for the engineering of light confinement and advanced lightwave manipulation functions. The ability to tailor field profiles in these on-chip devices allows enhanced light-matter interaction, strong modal confinement and the ability to engineer dispersion. Here, we present recent developments in photonic integrated circuits towards the generation of solitons, amplification, and optical waveform manipulation. By harnessing CMOS platforms with a high nonlinear figure of merit, the existence of on-chip Bragg solitons, Bragg soliton fission and solitons in photonic waveguides are experimentally observed. These demonstrations are made possible by 1,000X larger dispersion close to the band edge in on-chip Bragg gratings, an effect that arises from the interaction of forward and backward propagating fields. In addition, efficient parametric processes facilitate wavelength conversion of light and high gain amplification of signals. These efficient nonlinear mechanisms provide a possible pathway in which to realize new approaches to efficiently manipulate optical waveforms.
|