Translator Disclaimer
Presentation + Paper
21 August 2020 Vision-based high speed wafer film thickness profile estimation with nonlinear regression
Author Affiliations +
Measuring the thickness of thin films on a wafer is one of the most important steps for the semiconductor manufacturing process. This paper proposes a vision-based methodology for estimating a film thickness profile of the wafer. The scalability and industrial applicability of obtaining film thickness for the wafer with a small computational cost are demonstrated. Experimental results and numerical simulations are designed for investigating the characteristics of estimated solutions based on multiple representative nonlinear regression methods. The regression models are trained with the training data which consists of image value and thickness value pairs where the thickness value is obtained from the physical metrology system. There is an inevitable trade-off between the accuracy and the computational time in the spectrum-based film thickness measurement system in general, but the performance of the proposed methodology satisfied both the accuracy and the estimation time to a moderate extent.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Doo-Hyun Cho, Hyounggon Kim, Jaehyeon Son, Sung-Ha Kim, Taejoong Kim, and Kwangsung Lee "Vision-based high speed wafer film thickness profile estimation with nonlinear regression", Proc. SPIE 11500, ODS 2020: Industrial Optical Devices and Systems, 115000K (21 August 2020);

Back to Top