Translator Disclaimer
Presentation + Paper
22 August 2020 Heteroepitaxial integration of InAs/InAsSb type-II superlattice barrier photodetectors onto silicon
Author Affiliations +
GaSb-based materials can be used to produce high performance photonic devices operating in the technologically important mid-infrared spectral range. Direct epitaxial growth of GaSb on silicon (Si) is an attractive method to reduce manufacturing costs and opens the possibility of new applications, such as lab-on-a-chip MIR photonic integrated circuits and monolithic integration of focal plane arrays (FPAs) with Si readout integrated circuits (ROICs). However, fundamental material dissimilarities, such as the large lattice mismatch, polar-nonpolar character of the III-V/Si interface and differences in thermal expansion coefficients lead to the formation of threading dislocations and antiphase domains, which effect the device performance. This work reports on the molecular beam epitaxial growth of high quality GaSb-based materials and devices onto Si. This was achieved using a novel growth procedure consisting of an efficient AlSb interfacial misfit array, a two-step GaSb growth temperature procedure and a series of dislocation filter superlattices, resulting in a low defect density, anti-phase domain free GaSb buffer layer on Si. A nBn barrier photodetector based on a type-II InAs/InAsSb superlattice was grown on top of the buffer layer. The device exhibited an extended 50 % cut-off wavelength at 5.40 μm at 200 K which moved to 5.9 μm at 300 K. A specific detectivity of 1.5 x1010 Jones was measured, corresponding in an external quantum efficiency of 25.6 % at 200 K.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Peter J. Carrington, Evangelia Delli, Veronica Letka, Matt Bentley, Peter D. Hodgson, Eva Repiso, Jonathan P. Hayton, Adam P. Craig, Qi Lu, Richard Beanland, Anthony Krier, and Andrew R. J. Marshall "Heteroepitaxial integration of InAs/InAsSb type-II superlattice barrier photodetectors onto silicon", Proc. SPIE 11503, Infrared Sensors, Devices, and Applications X, 115030G (22 August 2020);

Back to Top