Poster + Paper
10 October 2020 Serpentiform structured freestanding metallic mesh electrode for high-performance transparent and stretchable supercapacitor
Author Affiliations +
Conference Poster
Abstract
Wearable electronics are now moving towards transparent and stretchable promoting the synergetic development in transparent flexible energy storage devices. Typical supercapacitor electrodes suffer the stretchability limitation due to the material rigid and brittleness. Transparent stretchable electrodes are critical elements in the investigation of transparent and stretchable supercapacitors. Generally, the most widely used materials for TSEs are carbon nanotubes (CNTs), graphene, metal-nanowires, and metallic meshes. The homogeneous and designable metallic mesh attracted more attentions due to their high conductivity, thermal and air stability, easy management of optoelectrical properties and reproducibility. However, typical metallic mesh electrodes are usually substrate-supported with synthetic polymers, like polyethylene glycol terephthalate (PET), polyethylene naphthalate (PEN). The inherent properties of the substrate, such as greater thickness, lower optical transmittance, poor stretchability have appeared pronounced shortcomings. Here, we proposed a freestanding metal-mesh with serpentiform grid arrangement for its high transparency, super-flexibility and stretchability, and ultrathin thickness, which can be employed as high performance transparent stretchable supercapacitor current collectors. The solid supercapacitor assembled by the proposed stretchable and transparent electrode reveals a high transparency of 82% at the wavelength of 550 nm and large capacitance of 1.1 mF/cm2. The superior device indicates an outstanding capacity retention up to 88% under 90% strain and sustained its electrochemical performance upto 67% even after 120% strain that meet the requirement in daily life condition. The serpentiform structured metallic mesh can be a strong candidate for future wearable electrochemical energy devices with superior transparency and stretchability.
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Zhouying Jiang, Yaoyao Zhao, Linsen Chen, and Yanhua Liu "Serpentiform structured freestanding metallic mesh electrode for high-performance transparent and stretchable supercapacitor", Proc. SPIE 11547, Optoelectronic Devices and Integration IX, 115471G (10 October 2020); https://doi.org/10.1117/12.2574192
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Electrodes

Transparency

Graphene

Transmittance

Carbon nanotubes

Electronics

Polymers

Back to Top