Translator Disclaimer
Presentation + Paper
22 February 2021 Fast etch recipe creation with automated model-based process optimization
Author Affiliations +
A method for automated creation and optimization of multistep etch recipes is presented. Here we demonstrate how an automated model-based process optimization approach can cut the cost and time of recipe creation by 75% or more as compared with traditional experimental design approaches. Underlying the success of the method are reduced-order physics-based models for simulating the process and performing subsequent analysis of the multi-dimensional parameter space. SandBox Studio™ AI is used to automate the model selection, model calibration and subsequent process optimization. The process engineer is only required to provide the incoming stack and experimental measurements for model calibration and updates. The method is applied to the optimization of a channel etch for 3D NAND devices. A reduced-order model that captures the physics and chemistry of the multistep reaction is automatically selected and calibrated. A mirror AI model is simultaneously and automatically created to enable nearly instantaneous predictions across the large process space. The AI model is much faster to evaluate and is used to make a Quilt™, a 2D projection of etch performance in the multidimensional process parameter space. A Quilt™ process map is then used to automatically determine the optimal process window to achieve the target CDs.
Conference Presentation
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yang Ban, Kara Kearney, Bryan Sundahl, Leandro Medina, Roger T. Bonnecaze, and Meghali J. Chopra "Fast etch recipe creation with automated model-based process optimization", Proc. SPIE 11615, Advanced Etch Technology and Process Integration for Nanopatterning X, 116150L (22 February 2021);

Back to Top