REFERENCESEli Lilly, “Report on Assessing the Socioeconomic Impact of Alzheimer’s Disease,” 2017, <https://eiuperspectives.economist.com/sites/default/files/AssessingthesocioeconomicimpactofAlzheimer’sinwesternEuropeandCanada.pdf> (6 January 2020).Eli Lilly, “Report on Assessing the Socioeconomic Impact of Alzheimer’s Disease,” 2017, <https://eiuperspectives.economist.com/sites/default/files/AssessingthesocioeconomicimpactofAlzheimer’sinwesternEuropeandCanada.pdf> (6 January 2020). Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., et al., “Dementia prevention, intervention, and care: 2020 report of the Lancet Commission,” The Lancet 396(10248), 413–446 (2020). https://doi.org/10.1016/S0140-6736(20)30367-6 Google Scholar Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., et al., “NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease,” Alzheimer’s & Dementia 14(4), 535–562 (2018). https://doi.org/10.1016/j.jalz.2018.02.018 Google Scholar Palop, J.J., and Mucke, L., “Network abnormalities and interneuron dysfunction in Alzheimer disease,” Nature Reviews Neuroscience 17(12), 777–792 (2016). https://doi.org/10.1038/nrn.2016.141 Google Scholar Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., et al., “The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception,” Alzheimers Dement 8, 1–68 (2012). https://doi.org/10.1016/j.jalz.2011.09.172 Google Scholar Iaccarino, H.F., Singer, A.C., Martorell, A.J., Rudenko, A., Gao, F., Gillingham, T.Z., Mathys, H., Seo, J., Kritskiy, O., et al., “Gamma frequency entrainment attenuates amyloid load and modifies microglia,” Nature 540(7632), 230–235 (2016). https://doi.org/10.1038/nature20587 Google Scholar Adaikkan, C., Middleton, S.J., Marco, A., Pao, P.C., Mathys, H., Kim, D.N.W., Gao, F., Young, J.Z., Suk, H.J., et al., “Gamma Entrainment Binds Higher-Order Brain Regions and Offers Neuroprotection,” Neuron 102(5), 929–943.e8 (2019). https://doi.org/10.1016/j.neuron.2019.04.011 Google Scholar Martorell, A.J., Paulson, A.L., Suk, H.-J., Abdurrob, F., Drummond, G.T., Guan, W., Young, J.Z., Kim, D.N.-W., Kritskiy, O., et al., “Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition.,” Cell 0(0), (2019). https://doi.org/10.1016/j.cell.2019.02.014 Google Scholar Singer, A.C., Martorell, A.J., Douglas, J.M., Abdurrob, F., Attokaren, M.K., Tipton, J., Mathys, H., Adaikkan, C., and Tsai, L.H., “Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load,” Nature Protocols 13(8), 1850–1868 (2018). https://doi.org/10.1038/s41596-018-0021-x Google Scholar IEEE Power Electronics Society, [IEEE Recommended Practices for Modulating Current in High-Brightness LEDs for Mitigating Health Risks to Viewers], in IEEE Std 1789–2015 (2015).IEEE Power Electronics Society, [IEEE Recommended Practices for Modulating Current in High-Brightness LEDs for Mitigating Health Risks to Viewers], in IEEE Std 1789–2015 (2015). Carstensen, M.S., Lindén, J., Nguyen, N.M., Hansen, H.E., Feijóo Carrillo, G.M., Hansen, L.S., Corell, D.D., Broeng, J., Kriegsfeld, L.J., et al., “40 Hz invisible spectral flicker and its potential use in Alzheimer’s light therapy treatment,” in SPIE(BiOS), 13 (2020).Carstensen, M.S., Lindén, J., Nguyen, N.M., Hansen, H.E., Feijóo Carrillo, G.M., Hansen, L.S., Corell, D.D., Broeng, J., Kriegsfeld, L.J., et al., “40 Hz invisible spectral flicker and its potential use in Alzheimer’s light therapy treatment,” in SPIE(BiOS), 13 (2020). Measurementst, I.A.S., “Visual Responses to Time-Dependent Stimuli.* I. Amplitude Sensitivity Measurementst”(4), 422–429 (1960). Google Scholar Troland, L., “NOTES ON FLICKER PHOTOMETRY: FLICKER-PHOTOMETER FREQUENCY AS A FUNCTION OF THE COLOR OF THE STANDARD, AND OF THE MEASURED, LIGHT.,” Nela Research Laboratory Notes853–855 (1916). Google Scholar Ives, H.E., “A Chart of the Flicker Photometer,” Journal of the Optical Society of America 7(5), 363 (1923). https://doi.org/10.1364/JOSA.7.000363 Google Scholar Hecht, S., and Shlaer, S., “Intermittent stimulation by light: V. the relation between intensity and critical frequency for different parts of the spectrum,” Journal of General Physiology 19(6), 965–977 (1933). https://doi.org/10.1085/jgp.19.6.965 Google Scholar TRUSS, C. V., “Chromatic flicker fusion frequency as a function of chromaticity difference.,” Journal of the Optical Society of America 47(12), 1130–1134 (1957). https://doi.org/10.1364/JOSA.47.001130 Google Scholar Kaiser, P.K., Ayama, M., and Vimal, R.L.P., “Flicker photometry: residual minimum flicker,” Journal of the Optical Society of America A 3(11), 1989 (1986). https://doi.org/10.1364/JOSAA.3.001989 Google Scholar Shady, S., MacLeod, D.I.A., and Fisher, H.S., “Adaptation from invisible flicker,” Proceedings of the National Academy of Sciences of the United States of America 101(14), 5170–5173 (2004).Shady, S., MacLeod, D.I.A., and Fisher, H.S., “Adaptation from invisible flicker,” Proceedings of the National Academy of Sciences of the United States of America 101(14), 5170–5173 (2004). Sharpe, L.T., Stockman, A., Jagla, W., and Jägle, H., “A luminous efficiency function, VD65* (λ), for daylight adaptation: A correction,” Color Research and Application 36(1), 42–46 (2011). https://doi.org/10.1002/col.v36.1 Google Scholar |
Translator Disclaimer
ACCESS THE FULL ARTICLE
Light emitting diodes
Modulation
Phototherapy
Alzheimer's disease
Light sources
Lamps
Light-emitting diode therapy