Poster + Presentation + Paper
4 April 2022 Full-waveform ultrasound modeling of soft tissue-bone interactions using conforming hexahedral meshes
Patrick Marty, Christian Boehm, Catherine Paverd, Marga Rominger, Andreas Fichtner
Author Affiliations +

REFERENCES

[1] 

Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May, D. A., Knepley, M. G., and Fichtner, A., “Modular and flexible spectral-element waveform modelling in two and three dimensions,” Geophysical Journal International 216, 1675–1692 (Mar. 2019). https://doi.org/10.1093/gji/ggy469 Google Scholar

[2] 

Komatitsch, D., Barnes, C., and Tromp, J., “Wave propagation near a fluid-solid interface: A spectralelement approach,” GEOPHYSICS 65, 623–631 (Mar. 2000). https://doi.org/10.1190/1.1444758 Google Scholar

[3] 

Bachmann, E. and Tromp, J., “Source encoding for viscoacoustic ultrasound computed tomography,” The Journal of the Acoustical Society of America 147, 3221–3235 (May 2020). Publisher: Acoustical Society of America. https://doi.org/10.1121/10.0001191 Google Scholar

[4] 

Pratt, R. G., Huang, L., Duric, N., and Littrup, P., “Sound-speed and attenuation imaging of breast tissue using waveform tomography of transmission ultrasound data,” in [Medical Imaging 2007: Physics of Medical Imaging], 6510, 65104S, International Society for Optics and Photonics (Mar. 2007). https://doi.org/10.1117/12.708789 Google Scholar

[5] 

Sandhu, G. Y., Li, C., Roy, O., Schmidt, S., and Duric, N., “Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer,” Physics in Medicine and Biology 60, 5381–5398 (July 2015). https://doi.org/10.1088/0031-9155/60/14/5381 Google Scholar

[6] 

Marty, P., Boehm, C., and Fichtner, A., “Acoustoelastic full-waveform inversion for transcranial ultrasound computed tomography,” in [Medical Imaging 2021: Ultrasonic Imaging and Tomography], 11602, 1160211, International Society for Optics and Photonics (Feb. 2021). Google Scholar

[7] 

Fry, F. J. and Barger, J. E., “Acoustical properties of the human skull,” The Journal of the Acoustical Society of America 63, 1576–1590 (May 1978). https://doi.org/10.1121/1.381852 Google Scholar

[8] 

White, P. J., Clement, G. T., and Hynynen, K., “Longitudinal and shear mode ultrasound propagation in human skull bone,” Ultrasound in Medicine & Biology 32, 1085–1096 (July 2006). https://doi.org/10.1016/j.ultrasmedbio.2006.03.015 Google Scholar

[9] 

Guasch, L., Calderón Agudo, O., Tang, M.-X., Nachev, P., and Warner, M., “Full-waveform inversion imaging of the human brain,” npj Digital Medicine 3, 28 (Feb. 2020). https://doi.org/10.1038/s41746-020-0240-8 Google Scholar

[10] 

Treeby, B. E. and Cox, B. T., “Modeling power law absorption and dispersion in viscoelastic solids using a split-field and the fractional Laplacian,” The Journal of the Acoustical Society of America 136, 1499–1510 (Oct. 2014). Publisher: Acoustical Society of America. https://doi.org/10.1121/1.4894790 Google Scholar

[11] 

Wiskin, J., Malik, B., Borup, D., Pirshafiey, N., and Klock, J., “Full wave 3D inverse scattering transmission ultrasound tomography in the presence of high contrast,” Scientific Reports 10, 20166 (Nov. 2020). Number: 1 Publisher: Nature Publishing Group. https://doi.org/10.1038/s41598-020-76754-3 Google Scholar

[12] 

Fincke, J., Zhang, X., Shin, B., Ely, G., and Anthony, B. W., “Quantitative Sound Speed Imaging of Cortical Bone and Soft Tissue: Results from Observational Data Sets,” IEEE Transactions on Medical Imaging, 1–1 (2021). Conference Name: IEEE Transactions on Medical Imaging. Google Scholar

[13] 

Komatitsch, D. and Tromp, J., “Introduction to the spectral element method for three-dimensional seismic wave propagation,” Geophysical Journal International 139, 806–822 (Dec. 1999). https://doi.org/10.1046/j.1365-246x.1999.00967.x Google Scholar

[14] 

Nissen-Meyer, T., Fournier, A., and Dahlen, F. A., “A 2-D spectral-element method for computing spherical-earth seismograms-II. Waves in solid-fluid media,” Geophysical Journal International 174, 873–888 (Sept. 2008). https://doi.org/10.1111/gji.2008.174.issue-3 Google Scholar

[15] 

Sommerfeld, A., “Die Greensche Funktion der Schwingungsgleichung,” in [Jahresbericht der Deutschen Mathematiker-Vereinigung], 21, 309–353 (1912). Google Scholar

[16] 

Kosloff, R. and Kosloff, D., “Absorbing boundaries for wave propagation problems,” Journal of Computational Physics 63, 363–376 (Apr. 1986). https://doi.org/10.1016/0021-9991(86)90199-3 Google Scholar

[17] 

Ferroni, A., Antonietti, P. F., Mazzieri, I., and Quarteroni, A., “Dispersion-dissipation analysis of 3-D continuous and discontinuous spectral element methods for the elastodynamics equation,” Geophysical Journal International 211, 1554–1574 (Dec. 2017). https://doi.org/10.1093/gji/ggx384 Google Scholar

[18] 

Drainville, R. A., Curiel, L., and Pichardo, S., “Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations,” The Journal of the Acoustical Society of America 146, 4382–4401 (Dec. 2019). Publisher: Acoustical Society of America. https://doi.org/10.1121/1.5139221 Google Scholar

[19] 

Fornberg, B., “The pseudospectral method: Accurate representation of interfaces in elastic wave calculations,” GEOPHYSICS 53, 625–637 (May 1988). Publisher: Society of Exploration Geophysicists. https://doi.org/10.1190/1.1442497 Google Scholar

[20] 

Robertson, J. L. B., Cox, B. T., Jaros, J., and Treeby, B. E., “Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation,” The Journal of the Acoustical Society of America 141, 1726–1738 (Mar. 2017). Publisher: Acoustical Society of America. https://doi.org/10.1121/1.4976339 Google Scholar

[21] 

Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., and Fichtner, A., “Flexible high-performance multiphysics waveform modeling on unstructured spectral-element meshes,” in [SEG Technical Program Expanded Abstracts 2018], 4035–4039, Society of Exploration Geophysicists, Anaheim, California (Aug. 2018). https://doi.org/10.1190/segeab.37 Google Scholar

[22] 

Moczo, P., Kristek, J., Vavryčuk, V., Archuleta, R. J., and Halada, L., “3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities,” Bulletin of the Seismological Society of America 92, 3042–3066 (Dec. 2002). https://doi.org/10.1785/0120010167 Google Scholar

[23] 

Pascal Jean Frey and George, P.-L., “General Definitions,” in [Mesh Generation : Application to Finite Elements], 19–43, John Wiley & Sons, Ltd, Wiltshire, 2 ed. (2008). https://doi.org/10.1002/9780470611166 Google Scholar

[24] 

Bangerth, W., Kim, I., Sheen, D., and Yim, J., “On Hanging Node Constraints for Nonconforming Finite Elements using the Douglas–Santos–Sheen–Ye Element as an Example,” SIAM Journal on Numerical Analysis 55, 1719–1739 (Jan. 2017). https://doi.org/10.1137/16M1071432 Google Scholar

[25] 

Blender Foundation, “Blender,” (Feb. 2021). Retrieved from https://www.blender.org/.Blender Foundation, “Blender,” (Feb. 2021). Retrieved from https://www.blender.org/.

[26] 

Coreform LLC, “Coreform Cubit 2021.5,” (2021). Orem, UT: Retrieved from http://coreform.com.Coreform LLC, “Coreform Cubit 2021.5,” (2021). Orem, UT: Retrieved from http://coreform.com.

[27] 

Lorensen, W. E. and Cline, H. E., “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics 21, 7 (July 1987). https://doi.org/10.1145/37402.37422 Google Scholar

[28] 

Schroeder, W., Maynard, R., and Geveci, B., “Flying Edges: A High-Performance Scalable Isocontouring Algorithm,” IEEE, Chicago (Oct. 2015). https://doi.org/10.1109/LDAV.2015.7348069Schroeder, W., Maynard, R., and Geveci, B., “Flying Edges: A High-Performance Scalable Isocontouring Algorithm,” IEEE, Chicago (Oct. 2015). https://doi.org/10.1109/LDAV.2015.7348069

[29] 

Owen, S. J., Staten, M. L., and Sorensen, M. C., “Parallel hexahedral meshing from volume fractions,” Engineering with Computers 30, 301–313 (July 2014). https://doi.org/10.1007/s00366-012-0292-8 Google Scholar

[30] 

Gosselin, M.-C., Neufeld, E., Moser, H., Huber, E., Farcito, S., Gerber, L., Jedensjö, M., Hilber, I., Gennaro, F. D., Lloyd, B., Cherubini, E., Szczerba, D., Kainz, W., and Kuster, N., “Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0,” Physics in Medicine and Biology 59, 5287–5303 (Aug. 2014). Publisher: IOP Publishing. https://doi.org/10.1088/0031-9155/59/18/5287 Google Scholar

[31] 

Iacono, M. I., Neufeld, E., Akinnagbe, E., Bower, K., Wolf, J., Vogiatzis Oikonomidis, I., Sharma, D., Lloyd, B., Wilm, B. J., Wyss, M., Pruessmann, K. P., Jakab, A., Makris, N., Cohen, E. D., Kuster, N., Kainz, W., and Angelone, L. M., “MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck,” PLOS ONE 10, e0124126 (Apr. 2015). https://doi.org/10.1371/journal.pone.0124126 Google Scholar

Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Interfaces

Tissues

Ultrasonography

Bone

Skull

Wave propagation

Computer simulations

Back to Top