PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
One of the big challenges of Augmented Reality (AR) is to create ergonomic smart glasses. Our laboratory proposes an unconventional concept of AR glasses based on self-focusing of multiple beams into the eye. The device comprises a dense electrode network that allows extracting light from a dense waveguide network at the intersections points. Each beam emitted at these points is reflected by a holographic element that directs light towards the eye with a proper angular direction. The image pixels are created on the retina by the interferences of various beam distributions. This paper presents a method to optimize the design of waveguides and electrodes to increase the number of pixels on the final image. Our method considers a first waveguide (resp. electrode) as a curve described by a succession of segments with a unique absolute angle crossing a horizontal (resp. vertical) axe. The other waveguides (resp. electrodes) are created by the translation of the curves so that the minimal distance between two curves is equal to a fixed value. We use the B-Splines mathematical model to approximate the succession of segments. An iterative method adapted to B-Splines allows calculating the intersections between waveguides and electrodes. An Emissive Point Distribution (EPD) is obtained by selecting random groups of waveguides and electrodes. Each EPD forms one pixel onto the retina. The Point Spread Function (PSF) of this EPD characterizes the self-focusing efficiency. We calculate the Signal-to-Noise-Ratio of each EPD to evaluate the quality of the whole self-focusing process and we compare it to the Airy function. Our new mathematical model improves by a factor 3.5 the number of pixels for an equivalent SNR in comparison to the model we previously used.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Fabian Rainouard, Matthias Colard, Olivier Haeberlé, Edouard Oudet, Christophe Martinez, "Optimal dense and random addressing design of emissive points in a retinal projection device," Proc. SPIE 12138, Optics, Photonics and Digital Technologies for Imaging Applications VII, 121380R (17 May 2022); https://doi.org/10.1117/12.2620243