Gallium oxide (Ga2O3) is an emerging wideband semiconductor which can be utilize in solar-blind photodetector and high power electronics application. Having a large bandgap and high breakdown field makes Ga2O3 material suitable for these device applications. However, the physical and the optical properties of Ga2O3 can be tailored by changing the annealing ambient and temperature, and understanding how the annealing atmosphere can affect these properties is crucial for designing a next generation optoelectronic devices. Moreover, the presence of defects and impurities can also affect the device parameters. Thus, in this work, we have investigated the influence of post deposition annealing atmosphere on the morphological, structural, and optical properties of Ga2O3 films. The prepared samples were further went through thermal annealing at 800°C for 30 mins in nitrogen (N2), and oxygen (O2) ambient to achieve β-phase of Ga2O3. The structural properties of all the samples were studied by atomic force microscopy, and x-ray diffraction while the optical properties were studies by UV-visible, and photoluminescence spectroscopy. We have found monoclinic β-phase in the polycrystalline annealed Ga2O3 samples. The optical band gap of films were increased after annealing and highest band gap is obtained to 5.44eV in N2 annealed sample as compared to as-deposited sample (4.56eV). A broad photoluminescence spectrum ranged from 350 to 480 nm was observed, which further deconvoluted in three peaks at around 378 nm, 399 nm, and 422 nm in as-deposited sample. The same peaks with broad photoluminescence spectrum was found to be blue shifted for annealed samples as compared to the as-deposited. This study will open a new direction in future deep-UV photodetector fabrication.
|