PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 12209, including the Title Page, Copyright information, Table of Contents and Conference Committee list.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This contribution highlights the importance of device architecture design using a comprehensive semiconductor device model. In the context of organic PV, we show that the mobility balance is not an issue and that the only important guideline is to ensure that the lowest mobility is above 4x10-4 cm2 V-1 s-1 . With this out of the way, researchers could focus on more cost-effective challenges. In the context of perovskite cells, we show that since the presence of ions means that electrochemistry is at play, the traditional semiconductor device models that exclude electrochemistry are incomplete.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Two-dimensional (2D) perovskites with organic spacer ligands are promising materials with superior stability and diversity for various photovoltaic devices. While traditional perovskite precursor solutions using high boiling point solvents easily cause poor uniformity, we demonstrate a new method for rapid crystallization of 2D perovskite by adopting low boiling point solvents. Our results show that 2D perovskite films have a high quality and their processing is simplified and shortened. Photoconductors are made based on the 2D perovskite films and applied in visible light and X-ray detection effectively. These findings suggest the easily processed 2D perovskites promising for practical optoelectronic applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Metal halide perovskite solar cells (PSCs) remain one of the most discussed and researched materials in the world due to their promising materials characteristics and performance metrics. PSCs possess qualities that find applications in civilian and military sectors. PSCs have been demonstrated to have power conversion efficiencies (PCE) of over 24%, 30% reduction in deposition costs, direct band gap with tunability ranging from 1.1-1.8 eV, and the ability for synthesis at room temperature. This correspondence seeks to shed light on the current Department of Defense (DoD) efforts in PSCs, as well as demonstrate reduction in cost, environmental impact, and CO2 footprint. Successes in stabilization of the materials and challenges to be overcome for perovskites are discussed. This work shows the possibility of integrating perovskite materials with existing mature solar panel technologies for successful marketization of perovskites and diversification of applications. Furthermore, this work demonstrates the opportunities that are presented by perovskite materials to the DoD community and unique challenges that are overcome with the application of this technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Anti-solvent-free one-step deposition of perovskite thin film shows promising potential for application in slot-die or roll-to-roll mass-fabrication processes of perovskite solar cells. The continuous coverage was confirmed by PV response of devices made using the one-step deposition process. In this work, we have developed a process to deposit MAPb0.75Sn0.25(I0.5Br0.5)3 perovskite thin films without anti-solvent adding MAAc to the ink. By varying the Br content of the perovskite precursor, we were able to tune the bandgap. Fabricated solar cells with the structure ITO/CuI/ MAPb0.75Sn0.25(I0.5Br0.5)3 /C60/BCP/Al with PCE of 4.59% show the path of the fabrication process of antisolvent-free tin-lead-based solar cells
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this study, we implement a laser patterning process on organic-inorganic hybrid perovskite (OIHP) film and perform systematical investigation on the effects of aperture ratios. Through careful aperture ratio control and by using indium tin oxide (ITO) transparent electrode, we can fabricate neutral-colored semitransparent OIHP solar cells. Furthermore, we show that a LiF interlayer between OIHP and C60 electron transport layer (ETL) plays a bifunctional role of interface passivation and current flow rectification. Consequently, we demonstrate a high efficiency of 12.83 % power conversion efficiency (PCE) from a 2.00 cm2 and 9.30 % PCE from 36.00 cm2 area, with 21.74 % average visible transmittance (AVT). In addition, the neutral-colored semitransparent solar cell retains 89.02 % of its initial efficiency after 1,000 hours in dry-air storage without encapsulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this study, efficient perovskite solar cells are prepared by using acetylacetone modified TiO2 nanoparticles (Acac-TiO2) as electron transporting layer (ETL). Acetylacetone suppresses Ti-OH surface defects by donating lone pair electrons and simultaneously drives conduction band of Acac-TiO2 and enhance energy band alignment with respect to perovskite. Accordingly, Acac-TiO2 based solar cell exhibits a high 21.20% PCE due to enhanced charge extraction and reduced defect density. Additionally, by adopting low temperature processed Acac-TiO2, we demonstrate flexible PSCs with 18.01% PCE and excellent mechanical stability, retaining 74.5% and 67.1% PCE after 5,000 bending cycles in outward and inward direction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this presentation, we propose a large-area solution-treated OPV module using a fullerene material in which the absorption spectrum of a photoactive material is almost similar to that of an LED light source used indoors. The output of the device through the series connection of the large area device and the voltage/current changed by the 1000~3000 lx LED light source and the application field are covered.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Lead-devoid halide-based double perovskite (DP) compounds are emerging as a potential candidate to replace the highly toxic and unstable lead-based perovskite materials. Here in this work we have synthesized and characterized a novel double perovskite material Cs2CuBiCl6 for the first time through an easy and commercial chemical route at ambient temperature. Further, we have investigated the morphological and optical behavior of synthesized double perovskite material. To check the crystallinity, phase formation, and purity of the DP, X-Ray diffraction (XRD) spectroscopy has been done at room temperature. A good crystalline and rhombohedral phase has been observed from the XRD plot, which is in good agreement with the reference data (ISCD#239874). Moreover, photoluminescence (PL) spectroscopy at room temperature (300K) of synthesized DP material has been done to observe its optical properties. A broad peak around 500 nm has been observed from the PL spectra corresponding to the energy of 2.5 eV, which further suggests the usefulness of the DP for visible range applications. The observed peak in the PL spectra is due to band-to-band transition and phonon-assisted carrier recombination of the excitons trapping. This novel study on the double perovskite material Cs2CuBiCl6 has opened a new path to develop optoelectronic devices based on non-toxic double perovskite material having better efficiency than the toxic counterpart.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In recent years, inorganic halide-based non-toxic double perovskite (DP) has emerged as a promising group of materials that are more stable than hybrid lead-based organic and inorganic perovskite materials for green energy applications. In this work, first time we report the synthesis of a new inorganic non-toxic halide-based double perovskite Cs2AlBiCl6 by a simple room-temperature synthesis technique. The structural properties of the synthesized material has been observed by using X-Ray diffraction (XRD). The observed peaks of XRD were found to be in good agreement with the reference data. To envisage the photo physical properties, we have done the photoluminescence (PL) spectroscopy of the synthesized material at low temperature (19 K) and high temperature (300 K). It is clear from the PL spectra that the main peak has been observed around 424 nm corresponding to 2.9 eV energy which also confirms the luminescent behavior of the material. The observed peak in the PL spectra is due to phonon-assisted carrier recombination of the excitons. Also, the PL intensity at low temperature (19K) is high as compared to high temperature (300K) due to a decrease in carrier recombination rate with an increase in temperature. This novel work opens a new path for the synthesis of non-toxic double perovskite materials for photovoltaic and green energy applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.