Optical meta-devices are composed of the collection of artificial subwavelength nanostructures. Phase, polarization, or amplitude of the incident electromagnetic waves can be manipulated by the specifically designed meta-devices. The demands of the new generation of photonics currently extend from classical to quantum optics. We report our progress in the design, fabrication, and application of the novel optical meta-devices from classical to quantum optics. We show a novel achromatic meta-lens array light field optical system for applications in imaging and sensing. We integrate a meta-lens array with a thin slice BBO nonlinear crystal to form a high-dimensional quantum entanglement optical chip. Results of the excellent mutual entanglement fidelity in 2-dimensional, 3-dimensional, and 4-dimensional experiments have successfully demonstrated the novel function of our high-dimensional optical quantum chip.
|