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ABSTRACT

Imaging systems require to be calibrated. The geometric calibration consists in estimating several parameters
describing the projection geometry. Just like in computer vision for cameras, intrinsic parameters characterize
the internal parameters of x-ray projection system. The extrinsic parameters define the orientation and position
of the acquisition system. In x-ray computed tomography (CT), the acquisition systems are generally composed
of a detector and a x-ray source. The object to be reconstructed lies in-between. A perfect knowledge of the
calibration parameters is needed for the reconstruction algorithm to reduce artefacts. In this paper, we focus on
off-line calibration methods for 1D linear x-ray detector systems. We first introduce a calibration method for
systems composed of a single linear detector. This method solves the problem of calibration in two steps using
calibration objects based on four co-planar lines. Moreover, we generalize the single linear detector geometric
calibration method to a multi-linear detector system. We compare four different numerical models and methods.
Three are based on non-linear equation systems. Finally, we propose an adaptative calibration object.
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1. INTRODUCTION

A high accuracy geometric calibration of the acquisition system is required to perform the 3D reconstruction
of an object from its projections. The algorithms rely on the perfect knowledge of the intrinsic and extrinsic
parameters of the system. In x-ray cone-beam CT (CBCT), these parameters describe the relation between a
3D point and its projection point on the detector image plane. Therefore, inaccurate estimations will lead to a
poor reconstruction.
Off-line calibration methods of systems using 2D detector are well-known in the computer vision literature.1

Many methods are based on the data acquired using a perfectly known geometrical object called the calibration
object. In computer vision, a well-known calibration object is the Tsai grid.2 In x-ray CBCT, calibration methods
are adapted from computer vision. Calibration objects, well suited to the circular CB geometry, composed of
several balls of high density material, have been designed. The projections of the balls form an ellipse from which
the calibration parameters can be estimated.3–5

Many computer vision methods are based on a pinhole camera model. The model relates a 3D point (X,Y, Z)
lying in the scene to a 2D point (u, v) on the detector. The intrinsic parameters αu = kuf , αv = kvf , u0 and v0
are contained in the calibration matrix K2D ∈ R3×4 where f is the focal distance, ku and kv are the densities of
pixels along the image axes u and v, respectively, and (u0, v0) is the principal point on the detector in the image
coordinates.

K2D =

 αu 0 u0 0
0 αv v0 0
0 0 1 0

 (1)

We define the rotation matrix R ∈ R3×3 and the translation vector t ∈ R3×1 representing the orientation and
position of the camera. Therefore, the pinhole camera model is defined in the Eq. (2). The parameter s is a
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Geometric calibration is the identification of K2D, R and t. In computer vision, K2D, R and t are often
estimated from sufficient projections (u, v) of 3D world points (X,Y, Z) using (2). However, these model and
methods must be adapted to calibrate a linear detector. A calibration object composed of lines is more suitable
to linear cameras or detectors.6 Horaud et al. proposed a two-step calibration method based on four co-planar
lines calibration objects. The adaptation of this method to a x-ray system with a linear detector is straight
forward as both systems can be described with the same geometric pinhole model.
In this paper, we adapt and generalize the Horaud et al. computer vision calibration method for linear camera
to a multiple linear detector x-ray system. We propose a calibration object with a minimal number of opaque
lines. A total of four different methods are proposed. In addition, we present a calibration object which can be
adapted to different configurations of detectors. Finally, we show the performances of the proposed methods and
calibration object in numerical simulations.

2. THEORY

2.1 Geometry

The system is composed of nD linear detectors, denoted Dl, l = 1, . . . , nD, and an unique x-ray source denoted
S. We denote (O,x,y, z) the world coordinate system centred at the origin O. An illustration of such a system
is given in the Fig. 1. Furthermore, we introduce the detector coordinate system associated to the lth detector
(Ol,ul,vl,wl) where vl is the image axis, wl is the axis perpendicular to vl pointing towards the source and
ul = vl ×wl. The origin of the system is the point Ol which is the orthogonal projection of the source S on the
detector Dl. The real vl is the coordinate of Ol along the linear detector, along vl, relative to the pixel 0 of Dl.

2.2 Single detector calibration

We start by introducing the single linear detector system calibration method derived from Horaud et al.6

Pinhole linear camera model Let’s consider a point (X,Y, Z) expressed in the world coordinates system
and its projection v on the linear detector D. To be seen, the point has to belong to the viewing plane Π which
is defined in the Eq. (3) using three real parameters p, q and r.

X = pY + qZ + r (3)
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Figure 1: A two linear detector system.
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Moreover, we adjust the pinhole camera model presented in the Eq. (2) to the system using a 1D detector.
The rotation matrix R ∈ R3×3 and the translation vector t ∈ R3×1 are representing the rigid transformation
from the world to the source coordinates. The calibration matrix K2D ∈ R3×4 defined in the Eq. (1) becomes
K1D ∈ R2×4.

K1D =

[
0 αv v0 0
0 0 1 0

]
(4)

The pinhole linear camera model is given by:

[
sv
s

]
= K1D

[
R t
0T 1

]
X
Y
Z
1

 (5)

Within the plane Π, i.e. using Eq. (3), we can rewrite the Eq. (5) such that the calibration problem is reduced
to the estimation of five real parameters n1, n2, n3, n4, n5 from :

(n1 − n4v)Y + (n2 − n5v)Z + n3 − v = 0 (6)

and the three parameters p, q, r from Eq. (3).

Calibration object The calibration object is made of four co-planar lines. Three of them are parallel and the
last one is oblique. For example, we can define these lines within the plane Z = 0 by the following equations.

(L1) Y = 0

(L2) Y = ξ1

(L3) Y = ξ2

(L4) Y = αX + β

(7)

The intersections of these lines with the plane Π and their projections on D are used to solve the calibration
problem. A key idea introduced by Horaud et al. is to use the intersections of (L1), (L2) and (L3) with the
plane Π and their projections on D to estimate the intersection point of (L4) and Π using a projective invariant
: the cross-ratio.1 Therefore, by translating this object several times along the y and/or z axes, we can acquire
enough data to solve the calibration problem.

Calibration problem We denote {Y p
i , Z

p
i , v

p
i } and

{
Xo

j , Y
o
j , Z

o
j

}
the sets of known data related to the parallel

and oblique lines, respectively, with i = 1, . . . , nP and j = 1, . . . , nO, where nP ≥ 5 and nO ≥ 3 are the numbers
of parallel and oblique lines, respectively. In Fig. 2 we show a calibration object containing the minimal number
of eight calibration lines. Using (6) and the parallels lines set of data, we can estimate the parameters n1, n2,
n3, n4, n5 by solving a system of nP equations in the least square sense. Likewise, we estimate the viewing plane
parameters p, q, r by solving a system of nO equations based on the Eq. (3).

Calibration parameters estimation The intrinsic and extrinsic parameters can easily be extracted from n1,
n2, n3, n4 and n5 using p, q and r (see6). Then, the source position (XS , YS , ZS) can be estimated by solving
the linear system (8) where v∗ and v⋄ are two different detector pixels. Indeed, the source belongs to all the
backprojection lines and the viewing plane Π. (n1 − n4v

∗)YS + (n2 − n5v
∗)ZS + n3 − v∗ = 0

(n1 − n4v
⋄)YS + (n2 − n5v

⋄)ZS + n3 − v⋄ = 0
−XS + pYS + qZS + r = 0

(8)
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2.3 Multi-detector calibration

The first obvious idea to calibrate a multiple linear detector system would be to use the previous method on
each detector. However, all subsystems share the same source. In this section, we present four different methods
exploiting this property.
In the following, as in section 2.1, the index l refers to the detector Dl, l = 1, . . . , nD.

Method 1 (M1) We use the previous method on each subsystem to calibrate the system. We then agregate
the equations (8) associated to each detector Dl, l = 1, . . . , nD for estimating an unique source position. The
agregated system of equations (9) is composed of 3nD equations and can be easily solved by least squares. (nl,1 − nl,4v

∗
l )YS + (nl,2 − nl,5v

∗
l )ZS = v∗l − nl,3

(nl,1 − nl,4v
⋄
l )YS + (nl,2 − nl,5v

⋄
l )ZS = v⋄l − nl,3

−XS + plYS + qlZS = −rl

(9)

Method 2 (M2) From the combination of the equations (3) and (9), we get a system of (nO+3)nD non-linear
equations (10) in the parameters pl, ql, rl, XS , YS and ZS , l = 1, . . . , nD.

(nl,1 − nl,4v
∗
l )YS + (nl,2 − nl,5v

∗
l )ZS = v∗l − nl,3

(nl,1 − nl,4v
⋄
l )YS + (nl,2 − nl,5v

⋄
l )ZS = v⋄l − nl,3

−XS + plYS + qlZS + rl = 0
plY

o
l,j + qlZ

o
l,j + rl = Xo

l,j , j = 1, . . . , nO

(10)

This system can be solved using the Gauss-Newton algorithm. We suggest to initialize the algorithm with the
results of M1.

Method 3 (M3) Similarly to M2, by combining the equations (6) and (9), we build a system of (nP + 3)nD

non-linear equations (11) in the parameters nl,1, nl,2, nl,3, nl,4, nl,5, XS , YS and ZS , l = 1, . . . , nD.
(nl,1 − nl,4v

∗
l )YS + (nl,2 − nl,5v

∗
l )ZS + nl,3 = v∗l

(nl,1 − nl,4v
⋄
l )YS + (nl,2 − nl,5v

⋄
l )ZS + nl,3 = v⋄l

−XS + plYS + qlZS = −rl
(nl,1 − nl,4v

p
l,i)Y

p
l,i + (nl,2 − nl,5v

p
l,i)Z

p
l,i + nl,3 = vpl,i,

i = 1, . . . , nP

(11)

We use the same numerical method as for M2 for solving Eq. (11).

Method 4 (M4) The last method combines the equations of M2 and M3. Consequently, the system of
(nP + nO + 3)nD equations (12) to solve is non-linear in the parameters pl, ql, rl, nl,1, nl,2, nl,3, nl,4, nl,5, XS ,
YS and ZS , l = 1, . . . , nD. 

(nl,1 − nl,4v
∗
l )YS + (nl,2 − nl,5v

∗
l )ZS + nl,3 = v∗l

(nl,1 − nl,4v
⋄
l )YS + (nl,2 − nl,5v

⋄
l )ZS + nl,3 = v⋄l

−XS + plYS + qlZS + rl = 0
plY

o
l,j + qlZ

o
l,j + rl = Xo

l,j , j = 1, . . . , nO

(nl,1 − nl,4v
p
l,i)Y

p
l,i + (nl,2 − nl,5v

p
l,i)Z

p
l,i + nl,3 = vpl,i,

i = 1, . . . , nP

(12)

The resolution can be done using the Gauss-Newton algorithm as for M2 and M3.

2.4 Calibration object

The use of sufficient four co-planar lines calibration objects presented in the section 2.2 could be enough to
generate the data required to solve the calibration problem. Nevertheless, we present in this section several
improvements.
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Minimal calibration object The first improvement is to construct a minimal calibration object composed of
5 parallel lines and 3 oblique lines. The parallel lines are shared among the oblique lines such that 3 groups of 3
parallel plus one oblique line, as in section 2.2, can be provided. The 5 parallel lines are defined by the equations
(13).

(L1) Z = 0, Y = 0

(L2) Z = 0, Y = ε

(L3) Z = 0, Y = 2ε

(L4) Z = −η, Y = 2ε

(L5) Z = −2η, Y = 2ε

(13)

The three oblique lines are defined by the equations (14).

(L6) Z = 0, Y =
ε

2W
X +

ε

2

(L7) Z = 0, Y =
ε

2W
X +

5ε

2

(L8) Y = 2ε, Z = − η

2W
X − η

2

(14)

The minimal calibration object is illustrated in the Fig. 2. One can notice that the group of lines in the plane
Y = 2ε doesn’t result from a translation as suggested in the section 2.2. The cross-ratio can be adapted in this
plane. Besides, we remark that the lines are positioned such that their projections can be spanned all over the
detectors using an adequate value of ε.

Adapted object First, we observed that adding to the minimal calibration object the parallel line (L9) defined
in the Eq. (15) improved significantly the accuracy of the calibration.

(L9) Z = 0, Y = 3ε (15)
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y

Figure 2: The minimal calibration object.
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Figure 3: (a) Vertical plane and (b) horizontal plane of the object used for the 8-detectors system calibration.
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Then, another improvement is the positioning of the oblique lines relatively to each detector Dl, l = 1, . . . , nD.
The lines are placed such that the intersections of the oblique lines and the viewing planes are at equal distance
of the two closest co-planar parallel lines. We denote these lines (L6,l), (L7,l) and (L8,l), l = 1, . . . , nD. The
lines (L6,l) and (L7,l) are positioned in the plane Z = 0 between the lines (L1) and (L2), and the lines (L3) and
(L9), respectively. They are inclined at a fixed angle λ. The lines (L8,l) are positioned in the plane Y = 2ε,
between the lines (L3) and (L4). The inclinations of these lines are specific to each detector. Nevertheless, the
position of the lines (L8,l) doesn’t impact the results as much as the two others obliques lines. Thus, every way
of positioning the lines can be used providing that the intersection of the lines and the viewing planes are at
Z = −η

2 . An example of such a calibration object is given in the Fig. 3.

3. SIMULATION

We consider a 8-linear-detector system. The distance from the source to the plane containing the detectors is
480mm. The detectors are spaced at a constant angle from the source. The calibration object is positioned
halfway between the source and the detectors line. The detectors have 1920 pixels of height 0.4mm. The
parameters of the calibration object are set to W = 600mm, ε = 125mm and η = 50mm. The two planes
containing line segments of the calibration object are illustrated in the Fig. 3a and 3b, respectively.

We begin with the comparison of the methods presented in the section 2.3. The methods are compared on
the average projection errors observed on 100 simulations where we add Gaussian noise N (0, σ2) to the data.
The value of σ is set as a fraction of the pixels size.

The average projection errors are calculated by computing the absolute value of the difference between the
theoretical projections of 2 oblique lines and the projections obtained using successively the Eq. (3) to compute

(a) (b)

Figure 4: Methods comparison. The graphics show the average projection errors of 2 oblique lines on the 8
detectors using the estimated values of (a) the parameters nl,1, nl,2, nl,3, nl,4, nl,5 (b) the parameters pl, ql, rl,
with σ = 0.24px, l = 1, . . . , nD.

(a) (b)

Figure 5: Calibration objects comparison. The graphics show the average projection errors of 2 oblique lines on
the 8 detectors using the estimated values of (a) the parameters nl,1, nl,2, nl,3, nl,4, nl,5 (b) the parameters pl,
ql, rl, with σ = 0.24px, l = 1, . . . , nD.
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the intersections of the oblique lines and Πl, and the Eq. (6) to compute the projections of the intersections
points. Two projections are calculated using the estimated values of either the parameters nl,1, nl,2, nl,3, nl,4,
nl,5 or the parameters pl, ql, rl. The results are presented in the Fig. 4.

It can be observed in the Fig. 4a that M3 and M4 improve slightly the estimation of the parameters nl,1, nl,2,
nl,3, nl,4, nl,5. We can see in the Fig. 4b that M2 and M4 fail to improve the estimation of the viewing planes
parameters whereas M1 and M3 have the lowest errors.
Finally, we compare the results of the proposed calibration object with those obtained with the object presented
in the section 2.2. We consider here only one wide object for all the detectors. We set ξ1 = ξ2 = 100mm, α = 0.25
and β = 75. The object is initially positioned in-between the source and the detectors line. Then, it is shifted
twice on the y and z axes. Exactly, we shift the object successively by Yshift = 200mm along the y axis and
by Zshift = −150mm along the z axis. We use M3 to solve the problem. The results are presented in the Fig.
5. We can see in the Fig. 5a that the objects achieves comparable results on the estimation of the parameters
nl,1, nl,2, nl,3, nl,4 and nl,5. However, we can observe in the Fig. 5b that the estimation of the viewing planes
parameters are much better with the calibration object proposed in 2.4.

4. CONCLUSION

We have extended the linear camera geometric calibration method introduced by Horaud et al.6 (see section 2.2)
to a multiple linear detector system. We have proposed a minimal calibration phantom of 8 opaque lines. But
we have observed that adding one opaque line improves highly the accuracy and the stability of the calibration
parameter estimation. This calibration object has been adapted to a multiple linear detector system in order
to preserve a sufficient oblicity for the oblique lines. We have proposed and evaluated 4 numerical methods
exploiting the fact that all subsystems share the same x-ray source.
Our numerical simulations have shown that estimating the geometric parameters of multi linear detector systems
taking into account that they share the same x-ray source, improves the geometric calibration.
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