Paper
7 April 2023 Contrast- and noise-dependent spatial resolution measurement for deep convolutional neural network-based noise reduction in CT using patient data
Author Affiliations +
Abstract
Deep convolutional neural network (DCNN)-based noise reduction methods have been increasingly deployed in clinical CT. Accurate assessment of their spatial resolution properties is required. Spatial resolution is typically measured on physical phantoms, which may not represent the true performance of DCNN in patients as it is typically trained and tested with patient images and the generalizability of DNN to physical phantoms is questionable. In this work, we proposed a patient-data-based framework to measure the spatial resolution of DCNN methods, which involves lesion- and noise-insertion in projection domain, lesion ensemble averaging, and modulation transfer function measurement using an oversampled edge spread function from the cylindrical lesion signal. The impact of varying lesion contrast, dose levels, and CNN denoising strengths were investigated for a ResNet-based DCNN model trained using patient images. The spatial resolution degradation of DCNN reconstructions becomes more severe as the contrast or radiation dose decreased, or DCNN denoising strength increased. The measured 50%/10% MTF spatial frequencies of DCNN with highest denoising strength were (-500 HU:0.36/0.72 mm-1; -100 HU:0.32/0.65 mm-1; -50 HU:0.27/0.53 mm-1; -20 HU:0.18/0.36 mm-1; -10 HU:0.15/0.30 mm-1), while the 50%/10% MTF values of FBP were almost kept constant of 0.38/0.76 mm-1.
© (2023) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Zhongxing Zhou, Hao Gong, Scott Hsieh, Cynthia H. McCollough, and Lifeng Yu "Contrast- and noise-dependent spatial resolution measurement for deep convolutional neural network-based noise reduction in CT using patient data", Proc. SPIE 12463, Medical Imaging 2023: Physics of Medical Imaging, 124631J (7 April 2023); https://doi.org/10.1117/12.2654972
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Deep convolutional neural networks

Modulation transfer functions

Denoising

Spatial resolution

Computed tomography

Back to Top