Local resonances, formed by zero-group velocity (ZGV) and cutoff frequency points, have been extensively studied using impulse-based approaches, such as pulse laser and impact echo. In this work, we showcase the electromechanical impedance (EMI) technique as an option to extract and promote zero-group velocity and cutoff frequency resonances in a waveguide structure. We identify the mechanisms of multiple resonances in the EMI spectra via a wave propagation perspective. Furthermore, we extract the dynamic response profiles at a cutoff frequency and a ZGV frequency to confirm the localized minimum frequency behavior within corresponding branches.
|