DTCO and Computational Patterning II

Ryoung-Han Kim
Editor

27 February - 2 March 2023
San Jose, California, United States

Sponsored and Published by
SPIE
Contents

ix Conference Committee

CURVILINEAR IN COMPUTATIONAL PATTERNING

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12495 03</td>
<td>Full chip inverse lithography technology mask synthesis for advanced memory manufacturing [12495-1]</td>
</tr>
<tr>
<td>12495 04</td>
<td>Structured assist features in inverse lithography [12495-2]</td>
</tr>
<tr>
<td>12495 05</td>
<td>Curvilinear mask handling in OPC flow [12495-3]</td>
</tr>
<tr>
<td>12495 06</td>
<td>Curvilinear data representation and its impact on file size and lithographic performance [12495-4]</td>
</tr>
</tbody>
</table>

COMPUTATIONAL PATTERNING I AND HIGH NA EUV

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12495 08</td>
<td>Improving OPC modeling accuracy with rigorous and compact modeling deformation effects in photoresists [12495-6]</td>
</tr>
<tr>
<td>12495 09</td>
<td>Computational evaluation of critical logical metal layers of pitch 20-24nm and the aberration sensitivity in high NA EUV single patterning [12495-8]</td>
</tr>
<tr>
<td>12495 0A</td>
<td>Application of resolution enhancement techniques at high NA EUV for next generation DRAM patterning [12495-9]</td>
</tr>
<tr>
<td>12495 0B</td>
<td>Evaluation of field stitching optimization for robust manufacturing with high-NA EUVL [12495-10]</td>
</tr>
<tr>
<td>12495 0C</td>
<td>Probability model of bridging defects for random logic via in 3nm double patterning technology at 0.33 NA [12495-68]</td>
</tr>
</tbody>
</table>

INVITED PRESENTATIONS I

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12495 0D</td>
<td>Direct print EUV patterning of tight pitch metal layers for Intel 18A process technology node (Invited Paper) [12495-11]</td>
</tr>
</tbody>
</table>
INVITED PRESENTATIONS II

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12495 0K</td>
<td>EUV full-chip curvilinear mask options for logic via and metal patterning (Invited Paper)</td>
<td>[12495-18]</td>
</tr>
<tr>
<td>12495 0L</td>
<td>Next-generation logic design architecture for vertical-transport nanosheets (Invited Paper)</td>
<td>[12495-20]</td>
</tr>
<tr>
<td>12495 0M</td>
<td>Design-technology co-optimization overview of CFET architecture (Invited Paper)</td>
<td>[12495-21]</td>
</tr>
</tbody>
</table>

COMPUTATIONAL PATTERNING II

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12495 0P</td>
<td>High accuracy OPC modeling for new EUV low-K1 mask technology options</td>
<td>[12495-25]</td>
</tr>
<tr>
<td>12495 0Q</td>
<td>Modeling accuracy and TAT improvements for next generation mask error correction</td>
<td>[12495-26]</td>
</tr>
</tbody>
</table>

COMPUTATIONAL LITHOGRAPHY: JOINT SESSION WITH 12495 AND 12494

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12495 0R</td>
<td>Computational lithography solutions to support EUV high-NA patterning</td>
<td>[12495-27]</td>
</tr>
<tr>
<td>12495 0S</td>
<td>Patterning assessment using 0.33NA EUV single mask for next generation DRAM manufacturing</td>
<td>[12495-28]</td>
</tr>
</tbody>
</table>

DESIGN FOR MANUFACTURING AND YIELD

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12495 0T</td>
<td>IC layouts patterns topological profiling using directional geometrical kernels</td>
<td>[12495-29]</td>
</tr>
<tr>
<td>12495 0U</td>
<td>Methodology development to benchmark power delivery designs in advanced technology nodes</td>
<td>[12495-30]</td>
</tr>
<tr>
<td>12495 0V</td>
<td>Design for manufacturability (DFM) in-design fixing for improving manufacturability aware scoring (MAS)</td>
<td>[12495-31]</td>
</tr>
<tr>
<td>12495 0W</td>
<td>Electrical analysis of a stochastically simulated 2 nm node electrical test structure</td>
<td>[12495-32]</td>
</tr>
<tr>
<td>12495 0X</td>
<td>Scalable hierarchy extraction of repeating structures to enhance full chip mask synthesis</td>
<td>[12495-33]</td>
</tr>
</tbody>
</table>
DTCO AND STCO

12495 0Y System-level evaluation of 3D power delivery network at 2nm node [12495-34]

12495 0Z DTCO of sequential and monolithic CFET SRAM [12495-35]

12495 11 Minimizing die fracture in three-dimensional IC advanced packaging wafer thinning process by inserting polyimide patterns [12495-37]

INVITED PRESENTATIONS III: DESIGN FOR TEST AND METROLOGY

12495 15 A holistic approach to zero defect products when wafer fab does not output zero defects (Invited Paper) [12495-41]

12495 16 Voltage contrast evaluation of dual-damascene 28nm-pitch EUV patterning and via overlap (Invited Paper) [12495-42]

12495 17 Design for inspection methodology for fast in-line eBeam defect detection (Invited Paper) [12495-43]

MACHINE LEARNING, DEEP LEARNING, AND AI I

12495 18 Unsupervised ML classification driven process model coverage check [12495-44]

12495 19 Machine learning architecture evaluation for fast and accurate weak point detection [12495-45]

12495 1A Machine learning applications on 3nm node technology and designs for improving block-level PPA [12495-46]

12495 1B Automatic generation of representative and diversified pattern samples from a full chip layout [12495-47]

12495 1C Quantifying process sensitivities for EUV and high-NA using machine learning based analytics [12495-48]

MACHINE LEARNING, DEEP LEARNING, AND AI II

12495 1D Frequency-informed deep-learning denoising method supporting sub-nm metrology for high NA EUV lithography [12495-49]

12495 1F Optical proximity correction with the conditional Wasserstein GAN [12495-56]
Design for manufacturability (DFM) physical verification using machine learning [12495-52]

Etch model calibration and usage in OPC flow for curvilinear layouts [12495-53]

MACHINE LEARNING, DEEP LEARNING, AND AI III

Evaluation of CNN for fast EUV lithography simulation using iN3 logic mask patterns [12495-55]

POSTER SESSION

Cost analysis of device options and scaling boosters below the A14 technology node [12495-59]

Improving FEM wafer review efficiency by introducing different pattern grouping modes [12495-60]

Lithography hotspot detection based on residual network [12495-62]

Constructing layout hierarchy for high-efficiency OPC flow [12495-63]

CPU time prediction using machine learning for post-tapeout flow runs [12495-64]

GPU-accelerated matrix cover algorithm for multiple patterning layout decomposition [12495-65]

Co-optimization of optical and resist models in the OPC modeling process using in-house genetic algorithm [12495-67]

Hybrid deep learning OPC framework with generative adversarial network [12495-69]

Fast and accurate machine learning assisted mask optimization [12495-71]

Design rule manual and DRC code qualification flows empowered by high coverage synthetic layouts generation [12495-72]

Productivity enhancement study: yield, cost, and turn-around-time modeling for EUV and high NA EUV [12495-73]

Design-aware virtual metrology and process recipe recommendation [12495-75]

A geometric model for active contours in inverse lithography [12495-76]

Physical design level PPA evaluation of buried power rail at 2nm node [12495-58]
12495 1Y Lithography hotspot correction on post-OPC layout using generative adversarial networks [12495-57]

12495 1Z Fast and accurate prediction of process variation band with custom kernels extracted from convolutional networks [12495-70]

12495 20 Layout pattern risk assessment in advanced technology node: methodology for pattern clustering and classification [12495-7]

DIGITAL POSTER SESSION

12495 24 Optical proximity correction with PID control through reinforcement learning [12495-24]

12495 25 Thick-mask model based on multi-channel U-Net for EUV lithography [12495-61]
Conference Committee

Symposium Chair
Kafai Lai, The University of Hong Kong (Hong Kong, China)

Symposium Co-chair
Qinghuang Lin, Lam Research Corporation (United States)

Conference Chair
Ryoung-Han Kim, imec (Belgium)

Conference Co-chair
Neal V. Lafferty, Siemens EDA (United States)

Conference Program Committee
Jason P. Cain, Advanced Micro Devices, Inc. (United States)
Luigi Capodieci, Motivo, Inc. (United States)
Lifu Chang, MOSIS Integrated Circuit Fabrication Service
(United States)
Dan J. Dechene, IBM Thomas J. Watson Research Center
(United States)
David M. Fried, Lam Research Corporation (United States)
Yuri Granik, Siemens EDA (United States)
Harsha Grunes, Intel Corporation (United States)
Srividiya Jayaram, Siemens EDA (United States)
Seongtae Jeong, SAMSUNG Electronics Co., Ltd. (Korea, Republic of)
Sachiko Kobayashi, KIOXIA Corporation (Japan)
Kafai Lai, The University of Hong Kong (Hong Kong, China)
Ya-Chieh Lai, Cadence Design Systems, Inc. (United States)
Lars W. Liebmann, TEL Technology Ctr., America, LLC (United States)
Kevin Lucas, Synopsys, Inc. (United States)
Lawrence S. Melvin III, Synopsys, Inc. (United States)
Shigeki Nojima, KIOXIA Corporation (Japan)
David Z. Pan, The University of Texas at Austin (United States)
Piyush Pathak, Cadence Design Systems, Inc. (United States)
Michael L. Rieger, Consultant (United States)
Vivek K. Singh, NVIDIA Corporation (United States)
Chun-Ming Wang, Western Digital Corporation (United States)
Lynn T. Wang, GlobalFoundries (United States)
Yayi Wei, Institute of Microelectronics, Chinese Academy of Sciences (China)
Chi-Min Yuan, NXP Semiconductors (United States)