The power of artificial intelligence (AI) coupled with optimization algorithms can be linked to data-rich digital twin models to perform predictive analysis to make better informed decisions about installation operations and quality of life for the warfighters. In the current research, we developed AI connected lifecycle building information models through the creation of a data informed smart digital twin of one of US Army Corps of Engineers (USACE) buildings as our test case. Digital twin (DT) technology involves creating a virtual representation of a physical entity. Digital twin is created by digitalizing data collected through sensors, powered by machine learning (ML) algorithms, and are continuously learning systems. The exponential advance in digital technologies enables facility spaces to be fully and richly modeled in three dimensions and can be brought together in virtual space. Coupled with advancement in reinforcement learning and computer graphics enables AI agents to learn visual navigation and interaction with objects. We have used Habitat AI 2.0 to train an embodied agent in immersive 3D photorealistic environment. The embodied agent interacts with a 3D environment by receiving RGB, depth and semantically segmented views of the environment and taking navigational actions and interacts with the objects in the 3D space. Instead of training the robots in physical world we are training embodied agents in simulated 3D space. While humans are superior at critical thinking, creativity, and managing people, whereas robots are superior at coping with harsh environments and performing highly repetitive work. Training robots in controlled simulated world is faster and can increase their surveillance, reliability, efficiency, and survivability in physical space.
|