In this study, an advanced laser-scribing approach was optimized for fabricating miniaturized, high-density multisensors on polyimide substrates. The femtosecond 515 nm laser, with an approximately 10 μm spot size, produced significantly smaller conductive traces compared to conventional methods. A flexible integration board processed and wirelessly transmitted physiological signals to an Android device. Laser-induced graphene (LIG) electrodes and the board were integrated, detecting electrocardiogram (ECG) and temperature on human skin. The laserscribing technique improved wearable sensor performance, enabling real-time, on-the-go health monitoring possibilities.
|