Paper
1 May 1990 Defect printability for soft x-ray microlithography
Darryl Peters, Bernard J. Dardzinski, Robert D. Frankel
Author Affiliations +
Abstract
The comment that typical clean room 'soft' defects (i.e., airborne, carbon-based particles) are transparent to x-rays is stated as a fundamental attribute of x-ray lithography. However, data showing lithographic conditions which result in a reduction in defect density have not yet been widely published. This paper reports an analysis of defect printability for soft x-ray lithography at wavelengths of 0.6 to 2.2nm and denotes exposure and resist development conditions under which representative soft and 'hard' reticle defects did not print. Resolution reticles with features down to 0.5pm were produced using Hampshire's baseline process which consists of electroplated gold absorber on a silicon support membrane. Latex spheres ranging in diameter from 0.36 to l.Opm were applied by VLSI Standards, Inc. to simulate soft defects. The large exposure latitude for x-ray lithography allows using an overexposure to reduce the impact of lower contrast defects without appreciable CD change. The printability of soft defects and defect-induced wall angle perturbations in resist patterns were also investigated through simulations using a modified version of SAMPLE and the results agreed with the observations. Identification of what constitutes a printable reticle defect for x-ray lithography is not as straightforward as that for optical lithography.
© (1990) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Darryl Peters, Bernard J. Dardzinski, and Robert D. Frankel "Defect printability for soft x-ray microlithography", Proc. SPIE 1263, Electron-Beam, X-Ray, and Ion-Beam Technology: Submicrometer Lithographies IX, (1 May 1990); https://doi.org/10.1117/12.20149
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Reticles

X-rays

X-ray lithography

Absorption

Latex

X-ray technology

Gold

RELATED CONTENT


Back to Top