Deformable mirrors (DMs) are a critical enabling technology for many astrophysics mission concepts currently in development. Unfortunately, generating the control signals required by DMs is difficult, and historically there have been few options for controlling a DM on a spacecraft. In this work, electronics suitable for controlling a 952 actuator MEMS DM have been developed and their performance has been characterized. The driver electronics deliver 16 bits of resolution with a least significant bit increment of 2.75 milliVolts and RMS electronic noise of less than 1.2 milliVolts over the range of 0 to 170 Volts. These electronics have been built to be compatible with the needs of missions that are cost-constrained and risk-tolerant. To that end, the driver electronics use widely available parts with a total expected unit cost of approximately $30,000. Although the driver electronics do not use radiation hardened parts, testing data indicates a 2 year lifetime in a TESS-like orbit with 90 percent confidence when shielded by 6 millimeters of aluminum.
|