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ABSTRACT

Precision Agriculture stands out as one of the most promising areas for the development of new technologies
around the world. Some advances from this area include the mapping of productivity areas and the development
of sensors for climate and soil analysis, improving the smart use of resources during crop management and
helping farmers during the decision-making stages. Among the problems of modern agriculture, the intensive
and non-localized use of herbicides causes environmental issues, contributes to elevated costs in farmers’ budgets
and results in applications of chemical substances in non-target organisms. Although there are many selective
herbicide spraying systems available for use, the majority working principle is based upon chlorophyll detectors,
thus not being able to distinguish crop plants from weeds with high accuracy in crop’s post-emergence herbicide
applications (“green-on-green” application). The main objective of this study is to develop a multispectral
camera system for in-crop weed recognition using Computer Vision techniques. The system was built with four
monochromatic CMOS sensor cameras with monochromatic wavelength bandpass filters (green, red, near infrared
and infrared) and a RGB camera. Soybean and weed plants images were captured in a controlled environment
using an automated v-slot rail system to simulate the movement of a spray tractor in the field. Infrared images
presented higher precision (90.5%) and recall (89.3%) values compared to the other monochromatic bands,
followed by RGB (87.0% and 86.1%, respectively) and near infrared images (83.6% and 87.9%), suggesting that
infrared wavelengths plays an important role in plant detection and classification. Our results state that the
combination of Computer Vision and multispectral images of plants is a more efficient approach for targeting
weeds among crop plants for post-emergence herbicide applications.
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1. INTRODUCTION

Precision Agriculture (PA) has gained global significance for optimizing natural resource utilization and crop
yield while reducing losses and waste.1 PA involves data collection to quantify spatial and temporal variations
in agricultural units, serving as a site-specific management strategy employing information technologies to aid
crucial decisions in crop production.2 Recent advances in Internet of Things (IoT) and Machine Learning are
enhancing PA’s accuracy, increasing benefits in quantity and quality of production, reducing farmers’ costs and
contributing to a more sustainable agriculture.3

A major challenge in modern agriculture is weed control, where undesired plants compete with crops for
resources like water, light, nutrients and growth space.4 Herbicide resistance, often due to continuous chemical
applications, leads to environmental harm and threatens ecosystem species. The rise of resistant weeds has drawn
attention from farmers and specialists due to its causes related to herbicide application practices and genetic
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variation.5 These factors contribute to the need for more precise methods such as localized input applications
and advanced PA technologies to address these issues.

Farmers’ interest in herbicide selective spraying systems is becoming high as these equipments rise as an
efficient, affordable, sustainable and rentable technology.6 While most available systems use chlorophyll detectors
for weed detection, these methods are limited in distinguishing crops from weeds in pre-emergence herbicide
applications, since this technique detects green (weeds) on a fallow ground. Computer Vision has emerged
as a promising solution for image-based weed detection and recognition among crops for selective spraying
herbicides in both pre and pos-emergence. YOLO (”You Only Look Once”) algorithm, known for its real-time
object detection capabilities, has been widely used in weed recognition tasks, showing success across various
applications and different weed species.7–12

Multispectral imaging consists of capturing images of the same scene using different wavelengths. It has been
widely used for remote sensing for productivity areas mapping,13 weed mapping14 plant density15 and plant
disease detection and diagnosis.16 For detection tasks in artificial and natural lighting conditions, plants spectral
signature plays an important role since different light wavelengths are reflected in distinct intensities and ways
by plants’ leaf structure.17

In this paper, it is described the use of multispectral images for in crop weed recognition using YOLO
algorithm and an artificial lighting environment. Three important weed species were used (Amaranthus viridis
L., Bidens pilosa L. and Digitaria horizontalis wild) and soybean (Glycine max L.) was chosen as a crop plant
due to its economic importance in Brazil’s agriculture. Plants were grown in an indoor greenhouse and a dataset
containing 3, 775 images was built using a multispectral camera system containing five cameras: RGB, green
(G), red (R), near infrared (NIR) and infrared (IR).

2. METHODS

The experiments were conducted within an indoor greenhouse laboratory located at the São Carlos Institute
of Physics from the University of São Paulo, ensuring controlled conditions with a temperature of 25 ℃ and a
regulated photoperiod of 12 hours of light followed by 12 hours of darkness. The indoor greenhouse was equipped
with ten LED lamps designed for plant growth and two white ceiling LED lights that offer visible spectrum illu-
mination, along with ten halogen lamps that provide near-infrared spectrum lighting. The cumulative spectrum
produced for both plant growth and image capture was assessed using a spectrometer from Ocean Optics (Ocean
Optics, USA) and is presented in Figure 1.

Figure 1: Indoor greenhouse lighting spectrum used for plant growth and image acquisition with the multispectral
camera system.

For purpose of automating the image acquisition and emulating the motion of a spray tractor navigating
through crop planting rows, a v-slot rail system was built using a wooden frame (see Figure 2). The architecture
encompasses two v-slot rails affixed with cameras, a NEMA 17 stepper motor connected via GT2 belts and pulleys,
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Figure 2: Automated v-slot rail system developed to automate image acquisition and to simulate the movement
of a spray tractor in the field towards crop’s planting rows.

and a CNC Shield housing an Arduino Nano to regulate the NEMA 17 motor’s steps, thereby orchestrating the
camera system’s motion.

The camera arrangement comprises four monochromatic CMOS sensor cameras (ELP - OSMO B/W, China)
and a colored RGB CMOS sensor camera (ELP-USBFHD01M, China), each equipped with a 6 mm focal distance
lens. Both camera models feature 2 megapixels OV2710 CMOS sensors (1920 × 1080 pixels). Communication
between the cameras and a desktop computer occurred through the USB 2.0 protocol. Three monochromatic
bandpass filters designed to match green (G: 501 − 525 nm), red (R: 654 − 674 nm), and near-infrared (NIR:
761− 829 nm) wavelengths were placed over the lenses of three out of four monochromatic cameras, exclusively
allowing light of predetermined wavelengths to reach each sensor. The fourth monochromatic camera employed
an infrared longpass filter (IR: > 780 nm) on its lens. The RGB camera didn’t use additional filters, maintaining
only the factory KG1 filter to obstruct infrared light from reaching the sensor. The camera support structure
was designed using SolidWorks software (SolidWorks Corporation, USA) and produced via an Ender 3D printer
(Ender, China) to ensure alignment of all five cameras in the same direction as the system’s movement. Figure 3
shows the arrangement of the cameras on the support.

(a) (b)

Figure 3: Multispectral camera system developed for acquisition of multispectral images of weeds and soybean
plants. (a) Tridimensional concept; (b) bandpass filters array.

To facilitate plant growth, two trays filled with commercial soil were situated directly beneath the illumination
bench and the v-slot rail system. Soybean plants were meticulously sown in two parallel rows, while weed plants
were randomly distributed across the cultivation trays. Throughout the course of a month-long experiment, a
total of approximately 3, 775 images were acquired, with each camera contributing 755 images. These images
were labeled utilizing the bounding box technique in the Computer Vision Annotation Tool (CVAT) software
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and they were labeled into three classes: soybean (Glycine max (L.) Merrill plants), weed (broadleaf weeds of
the Amaranthus viridis L. and Bidens pilosa L. species), and grass (grassy weeds of the Digitaria horizontalis
wild species). Figure 4 shows examples of images captured in the different bands.

(a) (b) (c)

(d) (e)

Figure 4: Example of images captured at different bands. (a) RGB; (b) green (501 − 525 nm); (c) red (654 −
674 nm); (d) infrared (> 780 nm); (e) near-infrared (761− 829 nm).

The YOLO algorithm was employed, maintaining its fundamental architecture, for each of the individual
spectral camera images as well as the RGB images. The dataset was splitted into three subsets: 70% of images
for training, 20% for validation and 10% for testing, keeping the same amount of images for each band. Training
was executed over 3, 000 epochs, using early stopping technique with patience value set to 100. To evaluate
the performance of the different models, the following metrics were used: precision; recall; mAP(0.5); and
mAP(0.5:0.95). Precision is a measure of how accurate the model is in classifying; recall calculates how many
actual positives the model captures through labeling it is a true positive; and mAP is a metric that incorporates
a trade-off between precision and recall.

3. RESULTS

The five models were evaluated using the same 375 images (75 for each band and for the RGB images). Table 1
summarizes the results, presenting the metrics for each model.

Table 1: Results from tests performed for images in different bands and RGB.
Band Precision Recall mAP(0.5) mAP(0.5:0.95)
RGB 0.870 0.861 0.874 0.679
G 0.851 0.845 0.881 0.661
R 0.761 0.733 0.798 0.589
IR 0.905 0.893 0.928 0.725
NIR 0.836 0.879 0.875 0.641

Experimental results indicate best performance for IR band with precision of 90.5%, recall of 89.3%, mAP(0.5)
of 92.8% and mAP(0.5:0.95) of 72.5%. Figure 5 presents examples of detection and classification weeds and
soybean in the different bands.
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(a) (b) (c)

(d) (e)

Figure 5: Example of detection and classification of plants in the different bands. (a) RGB; (b) green; (c) red;
(d) infrared; (e) near-infrared.

4. CONCLUSION

In this paper, the development of a multispectral camera and a v-slot rail system to capture images of plants
in an indoor greenhouse with artificial lighting is described. A multispectral image dataset consisting of 3, 775
images of weeds and soybean plants was assembled using four monochromatic bands (G, R, NIR, and IR) and
an RGB camera. The YOLO algorithm was employed to conduct weed detection among soybean plants utilizing
the five types of acquired images. Experimental results reveal that the longpass infrared band achieved superior
precision and recall values (0.905 and 0.893, respectively) followed by RGB (0.870 and 0.861, respectively) and the
near-infrared band (0.836 and 0.879, respectively), demonstrating a good performance of infrared wavelengths
for weed recognition within crop settings. Furthermore, it was demonstrated that Computer Vision offers a
promising avenue for addressing post-emergence herbicide applications, given its ability to differentiate between
crop plants and weeds.
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