You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 September 1990Effects of wavelength-dependent absorption on the polarization of light scattered from marine Chlorella
This paper investigates the wavelength dependence of the polarization characteristics of light scattered from laboratory cultures of marine Clzlorella. Scattering measurements were obtained using a scanning polarization-modulation nephelometer at wavelengths of 457 and 514 nm. The experimental data are corrected for non-spherical contributions and the resulting curves compared to Mie calculations of coated spheres with a Gaussian size distribution. Although the absorption of Chiorella has been reported to be strongly wavelength-dependent in the blue to green region of the spectrum, the scattering behavior changes very little. To verify the sensitivity of the scattering technique to changes in the imaginary refractive index, measurements were performed on absorbing and non-absorbing suspensions of wellcharacterized, coated copolymer particles. In all cases, the angle-dependent measurements and calculations were compared for four elements of the 16 element Mueller scattering matrix at two wavelengths. In the past, comparison of scattering models and measurements were generally performed for only the total intensity (one element of the scattering matrix). The use of four elements provides a much more stringent test of scattering calculations than those based on a single element. Using this method we are able to infer information about the internal structure and refractive indices of microscopic single cell organisms in vivo.
The alert did not successfully save. Please try again later.
Arlon J. Hunt, Mary S. Quinby-Hunt, Daniel B. Shapiro, "Effects of wavelength-dependent absorption on the polarization of light scattered from marine chlorella," Proc. SPIE 1302, Ocean Optics X, (1 September 1990); https://doi.org/10.1117/12.21484