You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 November 1990BGK method to determine thruster plume backscatter
An approximate molecular scatter model based on the Bhatnagar-Gross-Krook (BGK) theory for a binary system was developed to predict the plume return flux and molecular density distribution due to spacecraft thruster firing during orbital flight. This binary model considers intermolecular collisions involving a plume species and an ambient species and defines the onset of the BGK molecular flow to be on a plume translational breakdown surface based on density decay considerations (Bird''s criterion). With the assumption of average local collision frequency quantities the BGK quasi-linear differential equation can be decoupled into a selfscatter (collision between plume molecules) equation and an ambient scatter (collisions between plume and ambient molecules) equation both amenable to relatively straightforward numerical integration schemes. A sample molecular scatter solution for a small hydrazine monopropellant thruster (with 5-lb thrust) is included in this analysis. 1.
The alert did not successfully save. Please try again later.
Michael C. Fong, Aleck L. Lee, "BGK method to determine thruster plume backscatter," Proc. SPIE 1329, Optical System Contamination: Effects, Measurement, Control II, (1 November 1990); https://doi.org/10.1117/12.22613