You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 February 1991Control of flexible, kinematically redundant robot manipulators
The use of kinematic redundancy in control algorithms to avoid singularities evade obstacles minimize joint torques manipulator kinetic energy end effector contact forces etc. . . has been among the most active research topics in the field of robotics in the past few years. However these approaches have been associated mainly with rigid manipulators where there is no unpredictable flexible motions. When dealing with flexible manipulators the flexibility of the system will cause undesired inaccuracy in end effector motion. If these manipulators are kinematically redundant their kinematic redundancy can be used to compensate for the end effector motion inaccuracy and in many cases help damp out the vibrations. This paper examines this issue and introduces new control algorithms designed to regulate the flexibility while maintaining precise tracking of the end effector trajectory. The dynamic model used is a special case of the general multi-body dynamics designed to maximize its computational efficiency.
The alert did not successfully save. Please try again later.
Luong A. Nguyen, Ian David Walker, Rui J. P. de Figueiredo, "Control of flexible, kinematically redundant robot manipulators," Proc. SPIE 1387, Cooperative Intelligent Robotics in Space, (1 February 1991); https://doi.org/10.1117/12.25434