Translator Disclaimer
29 December 1978 An Automatic Method Of Real-Time Wavefront Analysis
Author Affiliations +
A technique for real-time measurement of interferograms is described which circumvents the common sources of error in traditional methods of analysis. By nulling the interferometer and simultaneously measuring the phase over a rectalinear grid, errors due to geometric distortion in the interferometer (which produces apparent coma terms in the analysis of straight line interferograms), uneven pupil illumination (which shifts the apparent location of the fringe peaks), and the difficulties in fitting and interpolation of polynomials to unevenly sampled pupil functions are eliminated. Data is not interpolated or artificially smoothed, so localized irregularities in the wavefront are visible in the results. Because on-line computer processing is used, contour and isometric plots are displayed less than two minutes after data taking is completed. A unique interface design permits utilization of virtually all of the information present in the input video signal. By taking thousands of measurements per minute at each point in the wavefront, and extending the measurements over several minutes, the effects of vibration and turbulence are averaged out of the data. With a reasonably stable interferometer, the effective instrument bandwidth can be reduced to .01 Hz. providing worst point peak-to-peak repeata-bilities of successive measurements of better than λ/100. For repeatabilities of λ/20, data taking times can be reduced below two seconds.
© (1978) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Robert C. Moore "An Automatic Method Of Real-Time Wavefront Analysis", Proc. SPIE 0148, Computers in Optical Systems, (29 December 1978);


Inexpensive Large-Aperture Interferometer
Proceedings of SPIE (December 25 1979)
The Zygo Interferometer System
Proceedings of SPIE (December 25 1979)
Infrared Laser Interferometer
Proceedings of SPIE (December 25 1979)

Back to Top