You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 August 1991Adaptive 4-D IR clutter suppression filtering technique
Conventional infrared (IR) surveillance systems employ clutter rejection filtering techniques operating in a single processing domain (e.g., spatial for scanned arrays, or temporal for staring arrays), providing a poor performance in weak-target scenarios. The adaptive filtering technique proposed here utilizes the information contained in the spatial, temporal, and spectral dimensions to simultaneously implement the functions of frame registration and clutter suppression. In this approach, the background clutter covariance is estimated from data samples obtained via a 4D sliding window. Then, from a priori knowledge of the target-clutter crosscorrelation function, a filter is designed to minimize the clutter variance while preserving the target. Simulation results of the 4D adaptive filtering procedure, using real IR scanned- array sensor data, amply demonstrate the superiority of this algorithm over commonly employed sequential approaches.
The alert did not successfully save. Please try again later.
Tom Aridgides, Manuel F. Fernandez, D. Randolph, David D. Ferris Jr., "Adaptive 4-D IR clutter suppression filtering technique," Proc. SPIE 1481, Signal and Data Processing of Small Targets 1991, (1 August 1991); https://doi.org/10.1117/12.45647