You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 December 1991Large zeolites: why and how to grow in space
Zeolite crystals are one of the Chemical Process Industry's most valuable catalytic and adsorbent materials. Large, essentially defect-free zeolite crystals could be used to better understand zeolite catalysis mechanisms, and could help in designing better zeolite adsorption systems. In addition, if zeolites could be made large enough, they could be used to make zeolite membranes; these could be used as reactors/separators, resulting in highly improved efficiency. Space provides a unique environment to grow large zeolites by allowing them to continue to grow suspended in their nutrient field. In order to better utilize this microgravity environment, it is necessary to control the nucleation event. Triethanolamine (TEA) can be used to control the time release of aluminum in a zeolite A solution. In a 1 g environment, the use of TEA resulted in a 25 - 50X increase in average and maximum crystal size. It is proposed that if fluid motion can be controlled and the rate of nutrient transport increased, substantially larger zeolite crystals can be formed in microgravity, using such nucleation control agents.
The alert did not successfully save. Please try again later.
Albert Sacco Jr., "Large zeolites: why and how to grow in space," Proc. SPIE 1557, Crystal Growth in Space and Related Optical Diagnostics, (1 December 1991); https://doi.org/10.1117/12.49578