Translator Disclaimer
1 October 1991 Fractional Brownian motion and its fractal dimension estimation
Author Affiliations +
A mathematical model of stochastic processes -- fractional Brownian motion -- is addressed. The power-law behaviors of FBM increments are studied in detail for moments, correlation functions, and power spectra. A moment method is proposed to do model testing of fractional Brownian motion. The results of FBM model testing of six simulators show that the covariance matrix transforming algorithm can provide samples with very good approximation of self-affinity. The self-affinity of the FBM samples generated by Fourier transform filtering is not very obvious. The statistical properties of fractal dimension estimation methods are analyzed. The simulation results show that the variance method provides good performance when only estimates of variances with small time lags are used in the least-squares estimation. For the power spectrum method, the bias is not ignorable because of the aliasing and the window effect.
© (1991) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Peng Zhang, Andrew B. Martinez, and Herbert S. Barad "Fractional Brownian motion and its fractal dimension estimation", Proc. SPIE 1569, Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision, (1 October 1991);


Error probabilities of minimum-distance classifiers
Proceedings of SPIE (September 30 1991)
Robust regularized image restoration
Proceedings of SPIE (September 30 1991)
Irregularly sampled scenes
Proceedings of SPIE (November 09 2004)
Optic flow: multiple instantaneous rigid motions
Proceedings of SPIE (September 30 1991)

Back to Top