You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 March 1992Fast 2-D Hartley transform in 3-D object representation and recognition
In image processing or computer vision, Fourier transform is widely used for frequency- domain analysis. However, Hartley transform can be a very good substitute for the more commonly used Fourier transform when the real input data are concerned. A two-dimensional butterfly algorithm for fast Fourier transform has been modified to calculate the Hartley transform faster than could be done using row-column decomposition. This paper presents three different frequency-domain registration techniques, power cepstrum, complex cepstrum and phase correlation. These techniques not only are capable of precise registration of images but also lead to three-dimensional (3-D) reconstruction of real objects by finding the corresponding points and disparities of an image pair. Use of these recently developed techniques allows one to obtain a precise displacement between two images and a quantitative measurement of 3-D information in a relatively faster computation time. Hartley transform can be used to implement all of these three techniques instead of using complex number computation required by Fourier transform. An additional 35 percent saving of the computation time is achieved by implementing the two-dimensional butterfly algorithm for computing Hartley transform. This reduction in computation time makes the use of Hartley transform in frequency-domain analysis more attractive.
The alert did not successfully save. Please try again later.
Dah-Jye Lee, Manuel Ramirez, Sunanda Mitra, "Fast 2-D Hartley transform in 3-D object representation and recognition," Proc. SPIE 1608, Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods, (1 March 1992); https://doi.org/10.1117/12.135097