1 July 1992 Autonomous planetary landing guidance by optical correlation
Author Affiliations +
We describe our planned use of optical correlation in landmark navigation associated with planetary landing. Standard correlation provides 'pointing-to' information, giving the vector to the landmark from the spacecraft in the spacecraft frame. The synthetic estimation filter (SEF) provides 'pointing-from' information, estimating the vector from the landmark to the spacecraft. Digital and optical SEFs were constructed and compared using a Martian-like 3D modelboard to provide test images. The digital SEF worked reasonably well, but the optical SEF did not perform as expected. The optical SEF was implemented with a liquid crystal television (LCTV) correlator that had been used successfully in previous SEF experiments using a spacecraft model. The results suggest the SLM model for the LCTV needs further refinements. Both the digital and optical filter provided good pointing-to results. We did not plot the correlation surface for the digital SEF response, and though it is less sharp than the POF, it had only a one-pixel variation in the peak location. Surface plots for the conventional optical phase-only filter produced a correlation peak that was sharp enough to be located within two pixels.
© (1992) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jerome Knopp, Jerome Knopp, Richard D. Juday, Richard D. Juday, Stanley E. Monroe, Stanley E. Monroe, } "Autonomous planetary landing guidance by optical correlation", Proc. SPIE 1702, Hybrid Image and Signal Processing III, (1 July 1992); doi: 10.1117/12.60553; https://doi.org/10.1117/12.60553

Back to Top