16 September 1992 Using modular neural networks to monitor accident conditions in nuclear power plants
Author Affiliations +
Abstract
Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, needs to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks are used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks.
© (1992) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Zhichao Guo, Zhichao Guo, Robert E. Uhrig, Robert E. Uhrig, } "Using modular neural networks to monitor accident conditions in nuclear power plants", Proc. SPIE 1709, Applications of Artificial Neural Networks III, (16 September 1992); doi: 10.1117/12.140029; https://doi.org/10.1117/12.140029
PROCEEDINGS
12 PAGES


SHARE
RELATED CONTENT


Back to Top