25 November 1992 Large-scale electrochromic devices for smart windows and absorbers
Author Affiliations +
Proceedings Volume 1728, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Chromogenics for Smart Windows; (1992) https://doi.org/10.1117/12.130541
Event: Optical Materials Technology for Energy Efficiency and Solar Energy, 1992, Toulouse-Labege, France
Abstract
Application of smart windows and absorbers demand electrochromic (EC) devices with long term stability and a large scale production technology. The paper presents recent results on preparation of rigid and flexible EC devices with 0.3 X 0.3 m2 active area in a three layer arrangement (polyaniline/polymeric electrolyte/tungsten trioxide). The main items and risks of processing an EC element are discussed. It is shown, that highly conductive, chemical resistant electrodes (sheet resistance 5 (Omega) /sq., transparency 85%) on flexible PMMA and PC substrates can be prepared by low temperature sputtering of indium tin oxide (ITO). Deposition apparatus and parameters are described. Well known standard techniques for the synthesis of EC films like polyaniline and tungsten trioxide are adapted for large surfaces: polyaniline and tungsten trioxide based EC films on ITO glass have been prepared with chemical and electrochemical preparation techniques. Electrode geometry plays an important role for the homogeneity of the grown film. We succeed in minimizing tolerances in optical density over 0.3 X 0.3 m2 down to 2%. The solid polymer electrolyte essentially determines the performance of the EC device. High transmittance, proper conductivity, and strong adhesion, are the main attributes.
© (1992) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Thomas Meisel, Thomas Meisel, Ruediger Braun, Ruediger Braun, } "Large-scale electrochromic devices for smart windows and absorbers", Proc. SPIE 1728, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Chromogenics for Smart Windows, (25 November 1992); doi: 10.1117/12.130541; https://doi.org/10.1117/12.130541
PROCEEDINGS
11 PAGES


SHARE
Back to Top