You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
A method for the correction of systematic errors generated by large orientational and retardance errors in the polarization optics in the dual rotating retarder polarimeter is presented. Small orientational and retardance errors (<1 degree(s)) can lead to large errors in the measured Mueller matrix (> 10% in some matrix elements). We incorporate correction terms for large orientation and retardance errors into the dual rotating retarder data reduction algorithm. Using these data reduction algorithms and a calibration step, the associated systematic errors are calculated and removed from the measured Mueller matrix. This procedure is especially useful for spectral and multi-wavelength systems in which the retardance and often the orientation of the retarders are wavelength dependent. The equations, the procedure to calculate the orientations of the polarization elements and the retardances of the retardation elements, and the method to correct for any errors are presented here. The effect of these errors on the calculated Mueller matrix elements and their correction is shown analytically and through experimental data taken on an infrared spectropolarimeter.
The alert did not successfully save. Please try again later.
David B. Chenault, J. Larry Pezzaniti, Russell A. Chipman, "Mueller matrix algorithms," Proc. SPIE 1746, Polarization Analysis and Measurement, (11 December 1992); https://doi.org/10.1117/12.138793