16 December 1992 Neural network transformation of arbitrary Boolean functions
Author Affiliations +
Abstract
Boolean logic is considered to be a good source for classification problems, an area dominated by neural networks. Although quite a few algorithms exist for training and implementing neural networks, no technique exists that can guarantee the transformation of any arbitrary Boolean function to neural networks. This paper describes a method that accomplishes exactly that. The algorithm is tested on the classic character recognition problem using translated, rotated, deformed, and noisy patterns. The initial simulation results are presented. Comparison of the proposed network to several popular existing networks has been performed and its advantages outlined. The future direction of research has also been explained.
© (1992) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Basit Hussain, Basit Hussain, Mansur R. Kabuka, Mansur R. Kabuka, } "Neural network transformation of arbitrary Boolean functions", Proc. SPIE 1766, Neural and Stochastic Methods in Image and Signal Processing, (16 December 1992); doi: 10.1117/12.130842; https://doi.org/10.1117/12.130842
PROCEEDINGS
13 PAGES


SHARE
Back to Top