You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 1993High-power optical coatings for a megajoule-class ICF laser
As a consequence of advancements in inertial confinement fusion research, LLNL is developing plans for a new 1.5 to 2 mega-joule solid-state Nd:glass laser designed to achieve fusion ignition. The new design is possible in part due to advances in optical coatings suitable for high-power laser systems. High damage threshold mirrors and polarizers are comprised of electron-beam deposited dielectric multilayers. Subthreshold illumination, or laser conditioning, of the multilayer coatings results in an increase in the damage thresholds by factors of 2 to 3 at 1.06 micrometers , thus meeting the fluence requirements of the advanced architecture. For anti-reflective coatings, protective organic coatings for non-linear crystals and phase plates for beam smoothing, sol-gel films provide high damage thresholds coatings at low cost.
The alert did not successfully save. Please try again later.
Mark R. Kozlowski, Ian M. Thomas, Jack H. Campbell, Frank Rainer, "High-power optical coatings for a megajoule-class ICF laser," Proc. SPIE 1782, Thin Films for Optical Systems, (4 March 1993); https://doi.org/10.1117/12.141024