You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 September 1993How source/collector placement and subsurface absorbing layer affect time-resolved and phase/modulation-resolved photon migration
Steven L. Jacques,1 Andreas H. Hielscher,2 Lihong V. Wang,3 Frank K. Tittel2
1Univ. of Texas M.D. Anderson Cancer Ctr. and Rice Univ. (United States) 2Rice Univ. (United States) 3Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
The time-resolved reflectance of photons from a homogeneous tissue was modeled using a Monte Carlo simulation. The data was then converted by fast Fourier transform (FFT) into the frequency domain. In the frequency domain, the phase, (Phi) , and modulation, M, of collected light from a frequency-modulated light source was determined. A comparison of Monte Carlo and diffusion theory was made for various separation distances between the source and collector on the tissue surface. The results showed that Monte Carlo and diffusion theory agreed in the time domain only for times larger than 500 ps after injection of an impulse of photons. In the frequency domain, Monte Carlo and diffusion theory agreed only if the probe separation, r, was at least 2 cm apart for (mu) s' equals (mu) s(1 - g) equals 5 cm-1, or in dimension less units r(mu) s' > 10. The effect of buried absorbed is also tested in the time and frequency domains. A semi-infinite volume of absorber is placed at 0, 3 mm, 6 mm, or (infinity) from the surface of a nonabsorbing tissue. The presence of a deep absorber on the time and frequency domain data show that attenuation of longer pathlength photons causes the phase of collected photons to reduce and the modulation of collected photons to increase. Both effects are indicative of the net shorter pathlength of the ensemble of collected photons.
The alert did not successfully save. Please try again later.
Steven L. Jacques, Andreas H. Hielscher, Lihong V. Wang, Frank K. Tittel, "How source/collector placement and subsurface absorbing layer affect time-resolved and phase/modulation-resolved photon migration," Proc. SPIE 1888, Photon Migration and Imaging in Random Media and Tissues, (14 September 1993); https://doi.org/10.1117/12.154649