You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 November 1993Superconducting tunnel junctions as photon-counting detectors
An experimental analysis of Niobium based superconducting tunnel junctions is presented, evaluating their performance as photon counting detectors. Several mechanism are found to be responsible for the degradation of the energy resolution. In particular, the high magnetic fields necessary to suppress the Josephson current in square junctions are shown to smear the energy bandgap. It is experimentally verified that in junctions with special geometries the Josephson current can be sufficiently suppressed by much lower fields. Several loss and contamination mechanisms are also discussed. Experimental results on new developments, such as quasiparticle trapping blocks, source collimation and substrate buffering, are presented, with a view to demonstrating significant improvements in energy resolution.
The alert did not successfully save. Please try again later.
Phillipp Huebner, Nicola Rando, Anthony J. Peacock, P. H. Videler, Axel van Dordrecht, John M. Lumley, "Superconducting tunnel junctions as photon-counting detectors," Proc. SPIE 2006, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IV, (19 November 1993); https://doi.org/10.1117/12.162844