You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 July 1993Simulations of EUV and ENA magnetospheric images based on the Rice convection model
The development of instrumentation for magnetosphenc imagery and the design of future missions demands increasingly realistic simulations of the EUV and ENA emissions from magnetospheric ion populations. Relatively "cold" ion populations (E<5OeV) that fill the plasmasphere can, in principle, be imaged in the re-radiated solar lines of He+(304A) and O+(834A). "Hot" ion populations (E<lkeV) can be imaged using the energetic neuiral atoms produced when energelic singly-charged ions are neutralized in a charge-exchange collision with the cloud of exospheric H-atoms (the hydrogen geocorona) that suffuses the magnetosphere. We have responded to the need for increasing realism in simulations by incorporating elements of the Rice Convection Model (RCM) of magnetospheric dynamics into our images. The model, developed over the past decade by the Rice University, takes as its inputs the variation of measured magnetospheric indices and follows the transport and energy changes of the ion populations over the evolution of magnetic storms. We actually use a stream-lined version of the RCM, called the Magnetic Specification Model (MSM) that does not compute a self-consistent electric field, but utilizes phenomenological convection pauerns. The result is a sequence of simulated images as they would be obtained throughout a magnetic storm along a representative spacecraft orbit. These images set the requirements for sensitivity, angular resolution, energy pass-bands, etc., that must be met by imaging instruments on future magnetospheric missions. We then address the critical question of the extraction from the images of physical parameters describing the ion distribution functions. We report our progress in the development of computer-automated algorithms that extract the optimal set of parameters by minimizing a difference function between images simulated from a mathematical model of the ion distribution and "data" images simulated from MSM runs using inputs from actual geomagnetic storms.
The alert did not successfully save. Please try again later.
Edmond C. Roelof, Barry H. Mauk, Robert R. Meier, Kurt R. Moore, Richard A. Wolf, "Simulations of EUV and ENA magnetospheric images based on the Rice convection model," Proc. SPIE 2008, Instrumentation for Magnetospheric Imagery II, (7 July 1993); https://doi.org/10.1117/12.147630