You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
In BISDN, the asynchronous transfer mode (ATM) requires all information to be represented as a sequence of standard data units called cells. Cell los is inherent in ATM networks due to the cell header corruption and buffer overflow in the network. Several studies have shown that cell losses are bursty for an ATM network. In this work, we encoded real video sequences with a variable bit-rate (VBR) version of the H.261 video encoder in order for us to determine the relationship between blocks in a video frame and the number of ATM cells generated. We then considered the impact of bursty cell losses on image block loss probability. Block loss distributions are given at different codec and channel parameters. We also obtained block loss results using a cell loss correction scheme. Three sequences were analyzed to obtain the cumulative block loss probability distribution. Similar maximum and minimum block loss probability values were obtained for each sequence. The block loss probability distribution varies according to the amount and type of motion present in each sequence. We show that the block loss is confined to one group of blocks (GOB). The maximum block loss probability can be two orders of magnitude larger than the channel cell loss probability. By using the cell loss correction scheme, block loss was reduced to a level equivalent to reducing cell loss probability by five orders of magnitude.
The alert did not successfully save. Please try again later.
Sze Keong Chan, Alberto Leon-Garcia, "Block loss for ATM video," Proc. SPIE 2094, Visual Communications and Image Processing '93, (22 October 1993); https://doi.org/10.1117/12.157939