1 June 1994 General data compression algorithm for space images using fractal techniques
Author Affiliations +
Abstract
Fractal compression of deep space and satellite-derived images using iterated function theory makes it possible to compress these complex natural images into a codified template, from which a facsimile of the original image can be regenerated. The coding technique makes use of the fractal properties of mathematical scale invariance and self-similarity to generate a set of transforms which occupy a minimum amount of space. The result is that these images can be compressed to a fraction of their original size, allowing high compression ratios to be obtained. Image compression using fractal techniques is information lossy. This means that the image generated from the template will be an approximation to the original image. For this reason, raw data should not be processed by such techniques. However, for information retrieval systems, where it is necessary to store many hundreds of images, this technique will allow the capacity of such systems to be increased several fold. This paper will give a brief review of fractals and then describe their use in image compression. The mathematics of iterated function schemes is considered. The coding and decoding schemes utilized in the compression and decompression, respectively, are presented. The paper will finish by showing the results of compression and decompression and will quantify differences between the original and facsimile.
© (1994) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Christopher M. Wood, Christopher M. Wood, } "General data compression algorithm for space images using fractal techniques", Proc. SPIE 2198, Instrumentation in Astronomy VIII, (1 June 1994); doi: 10.1117/12.176818; https://doi.org/10.1117/12.176818
PROCEEDINGS
6 PAGES


SHARE
RELATED CONTENT

Fractal equations and their solutions
Proceedings of SPIE (June 10 1993)
Fractal-based image coding with polyphase decomposition
Proceedings of SPIE (October 22 1993)
Adaptive PIFS model in fractal image compression
Proceedings of SPIE (April 15 1996)
Fractal image coding with high error tolerance
Proceedings of SPIE (May 15 2001)

Back to Top