29 July 1994 Application of genetic algorithm for automatic recognition of partially occluded objects
Author Affiliations +
Automatic recognition of partially occluded objects that are sensed by imaging sensors is a challenging problem in image understanding (IU), automatic target recognition (ATR), and computer vision fields. In this paper I address this problem by using a genetic algorithm (GA) as part of a model-based recognition scheme. The partially occluded object segments are rotated, translated, and scaled. Then each transform parameter is encoded into a binary string and used in a genetic algorithm. The suggested transformation is then applied to the sensed segment and the resulting object is matched against a library of stored targets. The fitness criterion is a distance function that measures the similarity between the segmented object and the stored target models. The GA by performing the process of mutation, reproduction, and crossover suggests optimum transform parameter sets. The empirical results of the application of the approach on a set of real ladar data of military targets shows that correct recognition for up to 50% target occlusion is possible.
© (1994) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Firooz A. Sadjadi, "Application of genetic algorithm for automatic recognition of partially occluded objects", Proc. SPIE 2234, Automatic Object Recognition IV, (29 July 1994); doi: 10.1117/12.181040; https://doi.org/10.1117/12.181040


Multi-class open set recognition for SAR imagery
Proceedings of SPIE (May 12 2016)
Parameter adaptation for target recognition in LADAR
Proceedings of SPIE (May 19 2005)
Recognition of tanks using laser radar (LADAR) images
Proceedings of SPIE (December 08 2004)
Mobile target ladar ATR system
Proceedings of SPIE (October 22 2001)

Back to Top