Translator Disclaimer
2 March 1994 Automated target recognition technique for image segmentation and scene analysis
Author Affiliations +
Automated target recognition (ATR) software has been designed to perform image segmentation and scene analysis. Specifically, this software was developed as a package for the Army's Minefield and Reconnaissance and Detector (MIRADOR) program. MIRADOR is an on/off road, remote control, multisensor system designed to detect buried and surface- emplaced metallic and nonmetallic antitank mines. The basic requirements for this ATR software were the following: (1) an ability to separate target objects from the background in low signal-noise conditions; (2) an ability to handle a relatively high dynamic range in imaging light levels; (3) the ability to compensate for or remove light source effects such as shadows; and (4) the ability to identify target objects as mines. The image segmentation and target evaluation was performed using an integrated and parallel processing approach. Three basic techniques (texture analysis, edge enhancement, and contrast enhancement) were used collectively to extract all potential mine target shapes from the basic image. Target evaluation was then performed using a combination of size, geometrical, and fractal characteristics, which resulted in a calculated probability for each target shape. Overall results with this algorithm were quite good, though there is a tradeoff between detection confidence and the number of false alarms. This technology also has applications in the areas of hazardous waste site remediation, archaeology, and law enforcement.
© (1994) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chris W. Baumgart and Christopher A. Ciarcia "Automated target recognition technique for image segmentation and scene analysis", Proc. SPIE 2243, Applications of Artificial Neural Networks V, (2 March 1994);


Back to Top