4 November 1994 Modified floatation method as an accurate tool for determining the macroscopic mass density of optical interference coatings
Author Affiliations +
Proceedings Volume 2253, Optical Interference Coatings; (1994) https://doi.org/10.1117/12.192142
Event: 1994 International Symposium on Optical Interference Coatings, 1994, Grenoble, France
The mass density values of optical thin films have been determined by means of a modified floatation method. This method bases on a linear density gradient, which can be produced by stacking mixtures (CH3OH/CHBr3 or C4H10O/CH2J2) with different densities in a vertical glass tube. Due to diffusion processes an exactly linear density gradient is obtained in the tube. The thin layers are now removed from the substrates, crushed and put into the liquid together with calibration substances. After a certain period, the layer particles remain at a certain height in the tube, where the actual density of the liquid is equal to that of the particles. The density of the thin films may then be calculated by a linear regression using the well-known densities of the calibration substances, such as NaCl, KCl, crystalline Si, glass and other. In the present contribution the determination of the mass density of different optical materials is demonstrated. As examples data on so-called `diamondlike' amorphous carbon layers as an IR optical interference coating, CVD diamond layers as an IR window material and amorphous silicon layers as a material for solar cells are presented. The macroscopic mass density values are compared with those obtained from other standard methods, like the normal floatation method, the separate determination of mass and volume of the layer and microscopic densities from EELS measurements. In all cases, a good agreement could be established. Furthermore, the value of the obtained data has been verified by examination of their correlation with other relevant physical properties of optical coatings, such as elementary composition and refractive index. The different effects of microvoids and macrovoids on the refractive index are discussed.
© (1994) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Martina Vogel, Martina Vogel, Olaf Stenzel, Olaf Stenzel, } "Modified floatation method as an accurate tool for determining the macroscopic mass density of optical interference coatings", Proc. SPIE 2253, Optical Interference Coatings, (4 November 1994); doi: 10.1117/12.192142; https://doi.org/10.1117/12.192142

Back to Top