PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
A first attempt to fabricate high reflectivity W/Be and Mo/Be multilayer mirror coatings for near normal incidence and grazing angle applications is reported. Forty layers each of W and Be were laid down alternatively on super polished fused silica substrates by sputter deposition with layer thicknesses of 16 angstroms and 40 angstroms, respectively and a 80 angstroms thick Be capping layer. Soft x-ray reflectivity measurements were carried out using the NRL reflectometer at the Brookhaven National Synchronous Light Source. Measurements at two grazing angles and photon energies yielded the following peak reflectivities: 14.3% (at 14.68 degree(s) and 439 eV) and 7.5% (at 20.2 degree(s) and 307 eV). Model peak calculations taking into account interlay roughness indicate layer roughness of 5.4 angstroms (rms) and a BeO thickness of 70 angstroms in the Be capping layer. In an attempt to reduce interlayer roughness and/or intermixing by reducing the bombardment of high energy Ar neutrals on the growing layers, experiments are underway to replace Ar as the sputter gas with Xe for the W/Be multilayer coatings.
Jack C. Rife,Brian W. Murray,Syen B. Qadri, andWilliam R. Hunter
"Fabrication and synchrotron measurements of Be-based multilayer x-ray mirrors", Proc. SPIE 2279, Advances in Multilayer and Grazing Incidence X-Ray/EUV/FUV Optics, (11 November 1994); https://doi.org/10.1117/12.193150
ACCESS THE FULL ARTICLE
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Jack C. Rife, Brian W. Murray, Syen B. Qadri, William R. Hunter, "Fabrication and synchrotron measurements of Be-based multilayer x-ray mirrors," Proc. SPIE 2279, Advances in Multilayer and Grazing Incidence X-Ray/EUV/FUV Optics, (11 November 1994); https://doi.org/10.1117/12.193150