You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 December 1994AMSU-B: a new tool for atmospheric research
The U.K. Meteorological Office (UKMO) is providing to NOAA three flight models of the high frequency part of the Advanced Microwave Sounding Unit known as AMSU-B. The AMSU-B is a five channel microwave radiometer with channels centered at 89, 150, 183+/- 1, 183+/- 3 and 183+/- 7 GHz with a field of view of nominally 1.1 degree(s) (i.e. 15 km footprint at nadir). AMSU-B will fly on the NOAA KLM polar orbiters due to be launched in the next few years. All three AMSU-B flight models have undergone a comprehensive test and characterization program to measure the antenna pattern and spectral, radiometric and thermal properties of each instrument. The results from this test program have allowed a procedure for the in-orbit calibration of AMSU-B to be defined. In parallel with the development of the AMSU-B radiometer a program of aircraft radiometer measurements and model development has been carried out with the aim of improving our capability of predicting the radiative transfer through the atmosphere at AMSU-B frequencies. The aircraft radiometer has channels at 89 GHz and 157 GHz which are close to the corresponding window channels of AMSU-B and it can view both upwards and downwards. Measurements of clear transmission, sea surface emissivity and transmission through cloud liquid water have all been analyzed. Based on these measurements a forward radiative transfer model is being developed which will be used in the retrieval of temperature, humidity and cloud liquid water from AMSU.
The alert did not successfully save. Please try again later.
Roger W. Saunders, Stephen J. English, David C. Jones, "AMSU-B: a new tool for atmospheric research," Proc. SPIE 2313, Microwave Instrumentation and Satellite Photogrammetry for Remote Sensing of the Earth, (21 December 1994); https://doi.org/10.1117/12.197338