You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 December 1994Finding thresholds for image segmentation
Segmentation methods for images often have cost functions which evaluate the (dis)similarity between pixels or segments. Thresholds on cost values are then used to decide whether or not to grow, join or split segments. The results for a given image critically depend on the selection of the threshold values. In remote sensing, a too low threshold will split up regions of constant ground cover and a too high threshold will join adjacent regions of different ground cover. Optimal thresholds can be determined using different classes of methods: generating cost value distributions from the original image; obtaining statistical distributions from segmented images; comparing a 'true' segmentation with the results of segmentation using a range of thresholds. A so-called 'true' segmentation can be derived from human expert segmentations or from maps obtained by ground surveys or segmentation of higher resolution images. Also artificial images can be generated having the advantage that the segmentation is known to sub-pixel level. Several methods for threshold determination are described for a hybrid segmentation method developed by us. Measures are described for comparison of two segmentations. Results are evaluated using several (parts of) LANDSAT images and artificial generated images.
The alert did not successfully save. Please try again later.
Theo E. Schouten, Maurice S. Klein Gebbinck, Ron P.H.M. Schoenmakers, Graeme G. Wilkinson, "Finding thresholds for image segmentation," Proc. SPIE 2315, Image and Signal Processing for Remote Sensing, (30 December 1994); https://doi.org/10.1117/12.196706