You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 January 1995Kinetics of cellular uptake and retention of the benzoporphyrin derivative (BPD): relevance to photodynamic therapy
Uptake and release/retention of the photosensitizer, benzoporphyrin derivative, monoacid ring A (BPD; 1 - 20 (mu) g/mL) was studied using cell lines (K562, L1210) and normal, non- activated and Concanavalin A-activated murine splenocytes. Concentrations of BPD in cell lysates were determined by fluorescence (440 nm excitation, 694 nm emission). The results showed that BPD was taken up and released rapidly by all types of cells within the same time frame. Maximum of BPD depended on the type of cells and was greatest in tumor cells, lowest in normal, non-activated cells and intermediate in activated cells. In addition, the maximum uptake depended on BPD concentration in the medium, length of incubation and presence of serum. All cells, regardless of type, retained a constant proportion (20 - 30%) of the amount of BPD taken up. This proportion was independent of length of incubation, BPD concentration in the medium and presence of serum. However, due to differences in maximum amounts of BPD taken up under the same conditions, tumor cells retained more BPD than normal cells and activated cells more than non-activated. The retained BPD was able to photosensitize the cells. The results were found to be relevant to the in vivo studies.
The alert did not successfully save. Please try again later.
Anna M. Richter, Howard Meadows, Ashok K. Jain, Alice J. Canaan, Julia G. Levy, "Kinetics of cellular uptake and retention of the benzoporphyrin derivative (BPD): relevance to photodynamic therapy," Proc. SPIE 2325, Photodynamic Therapy of Cancer II, (12 January 1995); https://doi.org/10.1117/12.199144