You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
31 May 1995Using Fourier transform microwave spectroscopy to detect hazardous air pollutants
A pulsed-molecular-beam Fabry-Perot cavity Fourier-transform microwave spectrometer developed at NIST has demonstrated sensitivities for many polar gas- phase molecular species in the low parts per million (ppm) to parts per billion (ppb) range. The highest sensitivity is obtained using neon or argon carrier gas but nitrogen or air can also be used, with some loss in sensitivity (up to 100 times) due to the less efficient rotational and vibrational cooling in the molecular beam with diatomic gases. The minimum detectable concentrations for several representative compounds are provided. These include acetaldehyde, acrolein, propionaldhyde, benzaldehyde, p- tolualdehyde, methanol, SO2, propene, methyl t-butyl ether, ethyl t-butyl ether, and others. Considerable attention has been given to making the instrument versatile and user friendly. The instrument is computer controlled using standard GPIB interfaces and several graphical interfaces under the CPLUPLU operating system.
The alert did not successfully save. Please try again later.
F. J. Lovas, W. Pereyra, Richard D. Suenram, Gerald T. Fraser, J.-U. Grabow, Angela R. Hight Walker, "Using Fourier transform microwave spectroscopy to detect hazardous air pollutants," Proc. SPIE 2365, Optical Sensing for Environmental and Process Monitoring, (31 May 1995); https://doi.org/10.1117/12.210827