1 May 1995 Laser thresholds in pulp exposure: a rat animal model
Author Affiliations +
Abstract
Laser technology is now being clinically investigated for the removal of carious enamel and dentin. This study used an animal model to evaluate histological pulpal effects from laser exposure. The molars of 24 Sprague-Dawley rats (n equals 264) were exposed to either a pulsed 1.06 micrometers Nd:YAG laser (120 microseconds, 320 micrometer diameter fiber), air rotor drill preparation or left untreated as controls. The following treatment conditions were investigated: control group (n equals 54); high speed drill with carbide bur (n equals 39); laser exposure at 50 mJ/p at 10 Hz (n equals 27), 100 mJ/p at 10 Hz (n equals 66) and 100 mJ/p at 20 Hz (n equals 39). A sixth treatment condition was investigated: root surface hypersensitivity, which included incremental laser exposure from 30 to 100 mJ/p at 10 Hz (n equals 39). The animals were euthanized either immediately after treatment, at one week, or at one month. The jaws were fixed and bioprepared. Remaining dentin thickness was measured, and ranged from 0.17 +/- 0.04 mm to 0.35 +/- 0.09 mm. The pulp tissue was examined for histologic inflammatory response. No evidence of pulpal involvement or adverse pulpal effects were found at any time period in teeth receiving 50 mJ/p. When histologic samples were compared with controls, all observations were similar. Of the 210 exposed teeth, 2 teeth receiving 100 mJ/p demonstrated abscess formation and were exfoliated. Further, in the rat molar when remaining dentin thickness was less than 0.5 mm, exposed to 100 mJ/p, threshold pulpal effects occurred. The response of rat pulp to laser exposure indicated no histologically measurable response to pulsed laser energy at 50 mJ/p.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Joel M. White, Joel M. White, Harold E. Goodis, Harold E. Goodis, Joel J. Kudler, Joel J. Kudler, } "Laser thresholds in pulp exposure: a rat animal model", Proc. SPIE 2394, Lasers in Dentistry, (1 May 1995); doi: 10.1117/12.207437; https://doi.org/10.1117/12.207437
PROCEEDINGS
10 PAGES


SHARE
Back to Top